Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 30281   Accepted: 9124

Description

John is going on a fishing trip. He has h hours available (1 <= h <= 16), and there are n lakes in the area (2 <= n <= 25) all reachable along a single, one-way road. John starts at lake 1, but he can finish at any lake he wants.
He can only travel from one lake to the next one, but he does not have to stop at any lake unless he wishes to. For each i = 1,...,n - 1, the number of 5-minute intervals it takes to travel from lake i to lake i + 1 is denoted ti (0 < ti <=192). For example,
t3 = 4 means that it takes 20 minutes to travel from lake 3 to lake 4. To help plan his fishing trip, John has gathered some information about the lakes. For each lake i, the number of fish expected to be caught in the initial 5 minutes, denoted fi( fi >=
0 ), is known. Each 5 minutes of fishing decreases the number of fish expected to be caught in the next 5-minute interval by a constant rate of di (di >= 0). If the number of fish expected to be caught in an interval is less than or equal to di , there will
be no more fish left in the lake in the next interval. To simplify the planning, John assumes that no one else will be fishing at the lakes to affect the number of fish he expects to catch.


Write a program to help John plan his fishing trip to maximize the number of fish expected to be caught. The number of minutes spent at each lake must be a multiple of 5.

Input

You will be given a number of cases in the input. Each case starts with a line containing n. This is followed by a line containing h. Next, there is a line of n integers specifying fi (1 <= i <=n), then a line of n integers di
(1 <=i <=n), and finally, a line of n - 1 integers ti (1 <=i <=n - 1). Input is terminated by a case in which n = 0.

Output

For each test case, print the number of minutes spent at each lake, separated by commas, for the plan achieving the maximum number of fish expected to be caught (you should print the entire plan on one line even if it exceeds 80
characters). This is followed by a line containing the number of fish expected.

If multiple plans exist, choose the one that spends as long as possible at lake 1, even if no fish are expected to be caught in some intervals. If there is still a tie, choose the one that spends as long as possible at lake 2, and so on. Insert a blank line
between cases.

Sample Input

2
1
10 1
2 5
2
4
4
10 15 20 17
0 3 4 3
1 2 3
4
4
10 15 50 30
0 3 4 3
1 2 3
0

Sample Output

45, 5
Number of fish expected: 31 240, 0, 0, 0
Number of fish expected: 480 115, 10, 50, 35
Number of fish expected: 724

Source

解析:由于是从第一个湖出发的。并且全部的湖都是一字排开的,所以仅仅需枚举他走过的湖泊数X就可以。即先如果他从湖1走到湖X。则路上总共花了T= T1 + T2 + T3 + ... + Tx。在这个前提下。就能够觉得他有能力在1~X之间的不论什么两个湖之间“瞬移”。即在任一时刻能够任选一个1~X中的湖钓鱼。

(想一想为什么?事实上这跟汽车加油的道理是一样的,在每一个湖的钓鱼顺序能够不是依次来的,你可能觉得总时间肯定比这个花得多。事实上不是的,顺序事实上是不影响结果的。由于假如我要先去湖1钓5分钟,接着去湖2钓5分钟。再接着回来湖1钓5分钟,这个过程事实上相当于先在湖1钓5+5=10分钟,然后再去湖2钓5分钟)。因此仅仅需一直贪心的选择当前能钓到鱼最多的湖就可以。还有就是贪心选择的时候。若有同样的湖时,优先选择编号较小的湖。

AC代码:

#include <algorithm>
#include <queue>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std; const int maxn = 30; int t[maxn], f[maxn], d[maxn]; struct node{
int id;
int f;
int d;
friend bool operator <(node a, node b){ //注意从大到小排,要重载 '<'
if(a.f == b.f) return a.id > b.id; //若鱼数相等,则选择id较小的
return a.f < b.f;
}
}; node fish[maxn]; int times[maxn][maxn]; //记录每一个湖钓鱼时间 int main(){
#ifdef sxk
freopen("in.txt", "r", stdin);
#endif // sxk int n, h;
while(scanf("%d", &n)!=EOF && n){
scanf("%d", &h);
memset(times, 0, sizeof(times));
h = h * 12;
for(int i=1; i<=n; i++){ scanf("%d", &fish[i].f); fish[i].id = i; }
for(int i=1; i<=n; i++) scanf("%d", &fish[i].d);
for(int i=1; i<=n-1; i++) scanf("%d", &t[i]); int maxans = 0;
int maxk = 1;
for(int i=1; i<=n; i++){
int tc = 0;
for(int j=1; j<i; j++) tc += t[j];
priority_queue<node> p;
for(int j=1; j<=i; j++) p.push(fish[j]); //将湖1~X的鱼量放入从大到小排的优先队列
int ans = 0;
int t = h - tc;
for(int j=1; j<=t; j++){
node foo = p.top();
ans += foo.f;
times[i][foo.id] += 5;
p.pop();
p.push(node{foo.id, max(foo.f - foo.d, 0), foo.d});
}
if(maxans < ans){
maxans = ans;
maxk = i;
}
}
for(int i=1; i<n; i++) printf("%d, ", times[maxk][i]);
printf("%d\n", times[maxk][n]);
printf("Number of fish expected: %d\n\n", maxans);
}
return 0;
}

POJ 1042 Gone Fishing (贪心)(刘汝佳黑书)的更多相关文章

  1. 刘汝佳黑书 pku等oj题目

    原文地址:刘汝佳黑书 pku等oj题目[转]作者:小博博Mr 一.动态规划参考资料:刘汝佳<算法艺术与信息学竞赛><算法导论> 推荐题目:http://acm.pku.edu. ...

  2. POJ 1042 Gone Fishing#贪心

    (- ̄▽ ̄)-* #include<iostream> #include<cstdio> #include<cstring> using namespace std ...

  3. 分数拆分(刘汝佳紫书P183)

    枚举,由已知条件推得y大于k,小于等于2K AC代码: #include"iostream"#include"cstring"using namespace s ...

  4. ACM题目推荐(刘汝佳书上出现的一些题目)[非原创]

    原地址:http://blog.csdn.net/hncqp/article/details/1758337 推荐一些题目,希望对参与ICPC竞赛的同学有所帮助. POJ上一些题目在http://16 ...

  5. c++20701除法(刘汝佳1、2册第七章,暴搜解决)

    20701除法 难度级别: B: 编程语言:不限:运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述     输入正整数n,按从小到大的顺序输出所有 ...

  6. 刘汝佳 算法竞赛-入门经典 第二部分 算法篇 第五章 1(String)

    第一题:401 - Palindromes UVA : http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8 ...

  7. [置顶] 刘汝佳《训练指南》动态规划::Beginner (25题)解题报告汇总

    本文出自   http://blog.csdn.net/shuangde800 刘汝佳<算法竞赛入门经典-训练指南>的动态规划部分的习题Beginner  打开 这个专题一共有25题,刷完 ...

  8. poj -- 1042 Gone Fishing(枚举+贪心)

    题意: John现有h个小时的空闲时间,他打算去钓鱼.钓鱼的地方共有n个湖,所有的湖沿着一条单向路顺序排列(John每在一个湖钓完鱼后,他只能走到下一个湖继续钓),John必须从1号湖开始钓起,但是他 ...

  9. poj 1363 Rails (【栈的应用】 刘汝佳的写法 *学习)

    Rails Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25964   Accepted: 10199 Descripti ...

随机推荐

  1. javascript模块加载框架seajs详解

    SeaJS是一个遵循commonJS规范的javascript模块加载框架,可以实现javascript的模块化开发和模块化加载(模块可按需加载或全部加载).SeaJS可以和jQuery完美集成,使用 ...

  2. GQ_百度百科

    GQ_百度百科 <GQ>杂志(原名<Gentlemen's Quarterly>,中文名<智族>)是一本男性月刊,内容著重于男性的时尚.风格.文化,也包括美食.电影 ...

  3. 首届全球RTB(实时竞价)广告DSP算法大赛

    首届全球RTB(实时竞价)广告DSP算法大赛 竞赛指南     RTB (Real Time Bidding, 实时竞价) 是近年来计算广告领域最激动人心的进展之一. 它增加了展示广告的透明度与效率, ...

  4. Strategic Game(匈牙利算法,最小点覆盖数)

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  5. 制作Orcad的变种BOM(Variant BOM)

    通常在Orcad中画的原理图并不仅仅是用于一款产品.比如一个控制器原理图,可能相应着很多款子产品线,而这些子产品线之间的差别就是通讯口组件不同,少焊几个芯片,或者仅仅是少焊几个电阻. 可是这样交付生产 ...

  6. Android FragmentPagerAdapter和FragmentStatePagerAdapter的区别

    FragmentPagerAdapter官方解释: This version of the pager is best for use when there are a handful of typi ...

  7. Send Mail 网址

    http://www.codeproject.com/Tips/371417/Send-Mail-Contact-Form-using-ASP-NET-and-Csharp http://www.c- ...

  8. iOS NSRuntime机制

    什么是Objective-C runtime? 简单来说,Objective-C runtime是一个实现Objective-C语言的C库.对象可以用C语言中的结构体表示,而方法(methods)可以 ...

  9. java中将list、map对象写入文件

    链接地址:http://blog.sina.com.cn/s/blog_4a4f9fb50101p6jv.html     推荐:凤爪女瓜子男怪象该谁反思伦敦房价为什么持续暴涨 × wvqusrtg个 ...

  10. BZOJ 3155: Preprefix sum( 线段树 )

    刷刷水题... 前缀和的前缀和...显然树状数组可以写...然而我不会, 只能写线段树了 把改变成加, 然后线段树维护前缀和, 某点p加, 会影响前缀和pre(x)(p≤x≤n), 对[p, n]这段 ...