二叉树删除 lisp
;;; From ANSI Common Lisp
; If you have questions or comments about this code, or you want
; something I didn't include, send mail to lispcode@paulgraham.com.
; This code is copyright 1995 by Paul Graham, but anyone who wants
; to use it is free to do so.
(defun bst-remove (obj bst <)
(if (null bst)
nil
(let ((elt (node-elt bst)))
(if (eql obj elt)
(percolate bst)
(if (funcall < obj elt)
(make-node
:elt elt
:l (bst-remove obj (node-l bst) <)
:r (node-r bst))
(make-node
:elt elt
:r (bst-remove obj (node-r bst) <)
:l (node-l bst)))))))
(defun percolate (bst)
(let ((l (node-l bst)) (r (node-r bst)))
(cond ((null l) r)
((null r) l)
(t (if (zerop (random 2))
(make-node :elt (node-elt (bst-max l))
:r r
:l (bst-remove-max l))
(make-node :elt (node-elt (bst-min r))
:r (bst-remove-min r)
:l l))))))
(defun bst-remove-min (bst)
(if (null (node-l bst))
(node-r bst)
(make-node :elt (node-elt bst)
:l (bst-remove-min (node-l bst))
:r (node-r bst))))
(defun bst-remove-max (bst)
(if (null (node-r bst))
(node-l bst)
(make-node :elt (node-elt bst)
:l (node-l bst)
:r (bst-remove-max (node-r bst)))))
二叉树删除 lisp的更多相关文章
- C和指针 第十七章 二叉树删除节点
二叉树的节点删除分为三种情况: 1.删除的节点没有子节点,直接删除即可 2. 删除的节点有一个子节点,直接用子节点替换既可以 3.删除的节点有两个子节点. 对于第三种情况,一般是不删除这个节点,而是删 ...
- c++(排序二叉树删除)
相比较节点的添加,平衡二叉树的删除要复杂一些.因为在删除的过程中,你要考虑到不同的情况,针对每一种不同的情况,你要有针对性的反应和调整.所以在代码编写的过程中,我们可以一边写代码,一边写测试用例.编写 ...
- js 二叉树删除最大值和最小值
//删除最小值function delMinNode (root){ if(!root) { return false; } var current = root; if (current.left ...
- POJ 1577 Falling Leaves (子母二叉树,给出叶子节点的删除序列,求前序遍历)
题意:给出一棵字母二叉树删除叶子节点的序列,按删除的顺序排列.让你输出该棵二叉树额前序遍历的序列.思路:先把一棵树的所有删除的叶子节点序列存储下来,然后从最后一行字符串开始建树即可,最后遍历输出. ...
- 使用Java实现二叉树的添加,删除,获取以及遍历
一段来自百度百科的对二叉树的解释: 在计算机科学中,二叉树是每个结点最多有两个子树的树结构.通常子树被称作“左子树”(left subtree)和“右子树”(right subtree).二叉树常被用 ...
- Java数据结构——二叉树 增加、删除、查询
//二叉树系统 public class BinarySystem { public static void main(String[] args) { BinaryDomain root = nul ...
- c++排序二叉树的出现的私有函数讨论,以及二叉树的删除操作详解
c++排序二叉树的出现的私有函数讨论, 以及二叉树的删除操作详解 标签(空格分隔): c++ 前言 我在c++学习的过程中, 最近打了一个排序二叉树的题目,题目中出现了私有函数成员,当时没有理解清楚这 ...
- AVL树插入和删除
一.AVL树简介 AVL树是一种平衡的二叉查找树. 平衡二叉树(AVL 树)是一棵空树,或者是具有下列性质的二叉排序树: 1它的左子树和右子树都是平衡二叉树, 2且左子树和右子树高度之差的 ...
- C语言实现二叉树的基本操作
二叉树是一种非常重要的数据结构.本文总结了二叉树的常见操作:二叉树的构建,查找,删除,二叉树的遍历(包括前序遍历.中序遍历.后序遍历.层次遍历),二叉搜索树的构造等. 1. 二叉树的构建 二叉树的基本 ...
随机推荐
- 使用 Override 和 New 关键字进行版本控制
使用 Override 和 New 关键字进行版本控制 C# 语言经过专门设计,以便不同库中的基类与派生类之间的版本控制可以不断向前发展,同时保持向后兼容. 这具有多方面的意义.例如,这意味着在基类中 ...
- 黄聪:Wordpress 模版技术手册 - WordPress Theme Technical manuals
WordPress基本模板文件 一套完整的WordPress模板应至少具有如下文件: style.css : CSS(样式表)文件 index.php : 主页模板 archive.php : Arc ...
- (C/C++) Callback Function 回调(diao)函数
原文: http://www.codeguru.com/cpp/cpp/cpp_mfc/callbacks/article.php/c10557/Callback-Functions-Tutorial ...
- JavaScript正则详谈
JavaScript RegExp 基础详谈 前言: 正则对于一个码农来说是最基础的了,而且在博客园中,发表关于讲解正则表达式的技术文章,更是数不胜数,各有各的优点,但是就是这种很基础的东西,如果 ...
- Form_Form Builder本地部署运行的实现(案例)
2014-08-09 Created By BaoXinjian
- NeHe OpenGL教程 第四十课:绳子的模拟
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- linux命令(5)文件操作:ls命令、显示文件总个数
一:ls命令是最常用的linux命令了:下面是ls --help里面的用法 在提示符下输入ls --help ,屏幕会显示该命令的使用格式及参数信息: 先介绍一下ls命令的主要参数: -a 列出目录下 ...
- python(17) 获取acfun弹幕,评论和视频信息
每天一点linux命令:新建文件夹
- linux 好玩的命令
发现一个linux好玩的命令,随机显示名言警句和诗词:fortune 和 fortune-zh (中文) cowsay: 小动物说话- ________________________________ ...
- Java基础-事件处理