hdu 5950 Recursive sequence 矩阵快速幂
Recursive sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
John likes to play mathematics games with his N cows. Recently, they
are attracted by recursive sequences. In each turn, the cows would stand
in a line, while John writes two positive numbers a and b on a
blackboard. And then, the cows would say their identity number one by
one. The first cow says the first number a and the second says the
second number b. After that, the i-th cow says the sum of twice the
(i-2)-th number, the (i-1)-th number, and i4. Now, you need to write a program to calculate the number of the N-th cow in order to check if John’s cows can make it right.
Each case contains only one line with three numbers N, a and b where N,a,b < 231 as described above.
each test case, output the number of the N-th cow. This number might be
very large, so you need to output it modulo 2147493647.
3 1 2
4 1 10
369
In the first case, the third number is 85 = 2*1十2十3^4.
In the second case, the third number is 93 = 2*1十1*10十3^4 and the fourth number is 369 = 2 * 10 十 93 十 4^4.
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
const int N=2e5+,M=1e6+,inf=1e9+;
const ll INF=1e18+,MOD=;
struct Matrix
{
ll a[][];
Matrix()
{
memset(a,,sizeof(a));
}
void init()
{
for(int i=;i<;i++)
for(int j=;j<;j++)
a[i][j]=(i==j);
}
Matrix operator + (const Matrix &B)const
{
Matrix C;
for(int i=;i<;i++)
for(int j=;j<;j++)
C.a[i][j]=(a[i][j]+B.a[i][j])%MOD;
return C;
}
Matrix operator * (const Matrix &B)const
{
Matrix C;
for(int i=;i<;i++)
for(int k=;k<;k++)
for(int j=;j<;j++)
C.a[i][j]=(C.a[i][j]+(a[i][k]*B.a[k][j])%MOD)%MOD;
return C;
}
Matrix operator ^ (const ll &t)const
{
Matrix A=(*this),res;
res.init();
int p=t;
while(p)
{
if(p&)res=res*A;
A=A*A;
p>>=;
}
return res;
}
};
Matrix base,hh;
void init()
{
base.a[][]=;
base.a[][]=;
base.a[][]=;
base.a[][]=;
base.a[][]=;
base.a[][]=;
base.a[][]=;
base.a[][]=;
base.a[][]=;
base.a[][]=;
base.a[][]=;
base.a[][]=;
base.a[][]=;
base.a[][]=;
base.a[][]=;
base.a[][]=;
base.a[][]=;
base.a[][]=;
base.a[][]=;
}
void init1(ll a,ll b)
{
memset(hh.a,,sizeof(hh.a));
hh.a[][]=b%MOD;
hh.a[][]=a%MOD;
hh.a[][]=***;
hh.a[][]=**;
hh.a[][]=*;
hh.a[][]=;
hh.a[][]=;
}
int main()
{
init();
int T,cas=;
scanf("%d",&T);
while(T--)
{
ll n,a,b;
scanf("%lld%lld%lld",&n,&a,&b);
init1(a,b);
Matrix ans=(base^(n-));
hh=hh*ans;
printf("%lld\n",hh.a[][]);
}
return ;
}
hdu 5950 Recursive sequence 矩阵快速幂的更多相关文章
- HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...
- 5950 Recursive sequence (矩阵快速幂)
题意:递推公式 Fn = Fn-1 + 2 * Fn-2 + n*n,让求 Fn; 析:很明显的矩阵快速幂,因为这个很像Fibonacci数列,所以我们考虑是矩阵,然后我们进行推公式,因为这样我们是无 ...
- Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)
题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...
- HDU5950 Recursive sequence (矩阵快速幂加速递推) (2016ACM/ICPC亚洲赛区沈阳站 Problem C)
题目链接:传送门 题目: Recursive sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total ...
- HDU5950 Recursive sequence —— 矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-5950 Recursive sequence Time Limit: 2000/1000 MS (Java/Others) ...
- HDU - 1005 Number Sequence 矩阵快速幂
HDU - 1005 Number Sequence Problem Description A number sequence is defined as follows:f(1) = 1, f(2 ...
- HDU 1005 Number Sequence(矩阵快速幂,快速幂模板)
Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1 ...
- HDU - 1005 -Number Sequence(矩阵快速幂系数变式)
A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) m ...
- CF1106F Lunar New Year and a Recursive Sequence——矩阵快速幂&&bsgs
题意 设 $$f_i = \left\{\begin{matrix}1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i < k\\ ...
随机推荐
- 【python cookbook】【数据结构与算法】3.保存最后N个元素
问题:希望在迭代或是其他形式的处理过程中对最后几项记录做一个有限的历史记录统计 解决方案:选择collections.deque. 如下的代码对一系列文本行做简单的文本匹配操作,当发现有匹配时就输出当 ...
- Linux设备模型(9)_device resource management ---devm申请空间【转】
转自:http://www.wowotech.net/linux_kenrel/device_resource_management.html . 前言 蜗蜗建议,每一个Linux驱动工程师,都能瞄一 ...
- 给NIOS II CPU添加一颗澎湃的心——sysclk的使用
给NIOS II CPU添加一颗澎湃的心——系统时钟的使用 本实验介绍如何在Qsys中添加一个定时器作为NIOS II的心跳定时器,并在NIOS II中软件编程使用该定时器. 将上一个实验watchd ...
- WebService工作原理
1.WebService工作原理-SOAP 当客户端调用一个WebService的方法时,首先将方法名称和需要传递的参数包装成XML,也就是SOAP包,通过HTTP协议传递到服务器端,然后服务器端解析 ...
- maven手动安装jar到本地仓库
比如oracle驱动ojdbc5.jar 1,安装MAVEN,并配置系统环境变量 2,将jar文件复制到d: 3,打开cmd窗口,cd到d: 4,执行命令:mvn install:install-fi ...
- PHP开发异步高性能的MySQL代理服务器
ySQL数据库对每个客户端连接都会分配一个线程,所以连接非常宝贵.开发一个异步的MySQL代理服务器,PHP应用服务器可以长连接到这台Server,既减轻MYSQL的连接压力,又使PHP保持长连接减少 ...
- STL MAP及字典树在关键字统计中的性能分析
转载请注明出处:http://blog.csdn.net/mxway/article/details/21321541 在搜索引擎在通常会对关键字出现的次数进行统计,这篇文章分析下使用C++ STL中 ...
- drawer principle in Combinatorics
Problem 1: Given an array of real number with length (n2 + 1) A: a1, a2, ... , an2+1. Prove that th ...
- WinMain函数详解(转载)
略加增添与修改! 工具:VC++6.0 系统:win7 64位 在Windows应用程序中,我们可以认为 WinMain() 函数是程序的入口,WinMain()的原型如下: int WI ...
- CSS之盒子模型
CSS核心内容 源文件目录: D:\Users\ylf\Workspaces\MyEclipse 10 标准流 盒子模型 浮动 定位 标准流/非标准流: 标准流:就是普通的 非标准流:实际工作中要打破 ...