题目连接

http://acm.hdu.edu.cn/showproblem.php?pid=2988

Dark roads

Description

Economic times these days are tough, even in Byteland. To reduce the operating costs, the government of Byteland has decided to optimize the road lighting. Till now every road was illuminated all night long, which costs 1 Bytelandian Dollar per meter and day. To save money, they decided to no longer illuminate every road, but to switch off the road lighting of some streets. To make sure that the inhabitants of Byteland still feel safe, they want to optimize the lighting in such a way, that after darkening some streets at night, there will still be at least one illuminated path from every junction in Byteland to every other junction.

What is the maximum daily amount of money the government of Byteland can save, without making their inhabitants feel unsafe?

Input

The input file contains several test cases. Each test case starts with two numbers m and n, the number of junctions in Byteland and the number of roads in Byteland, respectively. Input is terminated by m=n=0. Otherwise, 1 ≤ m ≤ 200000 and m-1 ≤ n ≤ 200000. Then follow n integer triples x, y, z specifying that there will be a bidirectional road between x and y with length z meters (0 ≤ x, y < m and x ≠ y). The graph specified by each test case is connected. The total length of all roads in each test case is less than 231.

Output

For each test case print one line containing the maximum daily amount the government can save.

Sample Input

7 11
0 1 7
0 3 5
1 2 8
1 3 9
1 4 7
2 4 5
3 4 15
3 5 6
4 5 8
4 6 9
5 6 11
0 0

Sample Output

51

最小生成树。。

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<set>
using std::set;
using std::sort;
using std::pair;
using std::swap;
using std::multiset;
using std::priority_queue;
#define pb(e) push_back(e)
#define sz(c) (int)(c).size()
#define mp(a, b) make_pair(a, b)
#define all(c) (c).begin(), (c).end()
#define iter(c) decltype((c).begin())
#define cls(arr, val) memset(arr, val, sizeof(arr))
#define cpresent(c, e) (find(all(c), (e)) != (c).end())
#define rep(i, n) for(int i = 0; i < (int)n; i++)
#define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
const int N = 200010;
const int INF = 0x3f3f3f3f;
typedef unsigned long long ull;
struct edge {
int u, v, w;
inline bool operator<(const edge &x) const {
return w < x.w;
}
}G[N];
struct Kruskal {
int E, sum, par[N], rank[N];
inline void init(int n) {
E = sum = 0;
rep(i, n + 1) {
par[i] = i, rank[i] = 0;
}
}
inline void built(int m) {
int u, v, w;
while (m--) {
scanf("%d %d %d", &u, &v, &w);
G[E++] = { u, v, w }, sum += w;
}
}
inline int find(int x) {
while (x != par[x]) {
x = par[x] = par[par[x]];
}
return x;
}
inline bool unite(int x, int y) {
x = find(x), y = find(y);
if (x == y) return false;
if (rank[x] < rank[y]) {
par[x] = y;
} else {
par[y] = x;
rank[x] += rank[x] == rank[y];
}
return true;
}
inline int kruskal() {
int ans = 0;
sort(G, G + E);
rep(i, E) {
edge &e = G[i];
if (unite(e.u, e.v)) {
ans += e.w;
}
}
return ans;
}
inline void solve(int n, int m) {
init(n), built(m);
printf("%d\n", sum - kruskal());
}
}go;
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w+", stdout);
#endif
int n, m;
while (~scanf("%d %d", &n, &m), n + m) {
go.solve(n, m);
}
return 0;
}

hdu 2988 Dark roads的更多相关文章

  1. HDU 2988 Dark roads(kruskal模板题)

    Dark roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  2. HDU 2988 Dark roads (裸的最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2988 解题报告:一个裸的最小生成树,没看题,只知道结果是用所有道路的总长度减去最小生成树的长度和. # ...

  3. HDU 2988.Dark roads-最小生成树(Kruskal)

    最小生成树: 中文名 最小生成树 外文名 Minimum Spanning Tree,MST 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的 ...

  4. 【HDOJ】2988 Dark roads

    最小生成树. /* */ #include <iostream> #include <string> #include <map> #include <que ...

  5. Dark roads(kruskal)

    Dark roads Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Su ...

  6. HDU 1102 Constructing Roads, Prim+优先队列

    题目链接:HDU 1102 Constructing Roads Constructing Roads Problem Description There are N villages, which ...

  7. HDOJ(HDU).1025 Constructing Roads In JGShining's Kingdom (DP)

    HDOJ(HDU).1025 Constructing Roads In JGShining's Kingdom (DP) 点我挑战题目 题目分析 题目大意就是给出两两配对的poor city和ric ...

  8. hdu 2988(最小生成树 kruskal算法)

    Dark roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. HDU 1025 Constructing Roads In JGShining's Kingdom(求最长上升子序列nlogn算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1025 解题报告:先把输入按照r从小到大的顺序排个序,然后就转化成了求p的最长上升子序列问题了,当然按p ...

随机推荐

  1. VI小技巧

    i.a        进入编辑模式 shift+a    到行尾insert o           在光标下一行编辑 shift+o     在光标上一行编辑 yy         复制 p     ...

  2. 学习总结 for循环--冒泡排序

    //输入N个人的分数,按从高到低进行排序 Console.Write("请输入人数"); int n = int.Parse(Console.ReadLine()); int[] ...

  3. ASP.NET MVC4 学习系统四(视图)

    视图(Views)    在ASP.NET MVC框架中,想要返回给用户HTML的控制器操作,就要返回ActionResult类型的ViewResult实例,ActionResult知道如何渲染应答结 ...

  4. $watch 和 $apply

    1.当你使用 ng-model, ng-repeat 等等来绑定一个元素的值时, AngularJS 为那个值创建了一个 $watch,只要这个值在 AngularJS 的范围内有任何改变,所有的地方 ...

  5. linux tcp状态学习

    参考: http://huoding.com/2013/12/31/316 http://www.cnblogs.com/sunxucool/p/3449068.html http://maoyida ...

  6. thinkphp数据库添加表单提交的数据

    $data['catename'] = I('catename');     获取表单的数据 $cate=D('cate');                               实例化cat ...

  7. basis基本tcode

    SM21 ST11     SM50 查看work process 使用情况 操作相关的查询功能     SM## 常用tcode     SM01 锁定事务 SM04 用户清单 SM05 HTTP ...

  8. backBarButtonItem 颜色/文字修改

    iOS7之后. 默认的返回按钮字体颜色是蓝色的, 显示内如是父VC(上一级界面)的title 如果要做修改, 可以通过下面的办法: 1. 修改字体颜色 (1) 在plist里面, 加上View con ...

  9. linux网络bond技术

    http://blog.chinaunix.net/uid-20799583-id-3117665.html1.创建bond0配置文件vi /etc/sysconfig/network-scripts ...

  10. 第一部分 CLR基础:第2章 生成、打包、部署和管理应用程序及类型

    2.1.NET Framework部署目标 Microsoft Windows多年来因不稳定和复杂而口碑不佳.造成的原因:1.应用程序都使用来自微软和厂商的动态链接库(dynamic-link lib ...