题意:便利店老板为了促销,推出了组合包的形式,将不同数量的各类商品打包成一个组合。比如2袋薯片,1听可乐的组合只要5元,而1袋薯片,2听可乐的组合只要4元。通过询问老板知道:一共有N种不同的商品和M种不同的商品组合;每一个组合的价格等于组合内商品售价之和,一个组合内同一件商品不会超过10件。

思路:高斯消元!精度的坑啊!一直错在90分!!!终于AC了,很多需要注意的地方!!

 #include <bits/stdc++.h>
#define LL long long
using namespace std;
const int N=; double a[N][N];
double t[N]; //临时行
double value[N]; //临时行 int Gaussian_elimination(int row,int col)
{
//计算上三角
for(int i=; i<col; i++) //列
{
int r=i;
for(int j=row; j>i; j--)
if( fabs(a[j][i])>fabs(a[r][i]) )
r=j;
if(r==i && fabs(a[i][i])<1e-) return -; //注意点1:精度
if(r!=i) swap(a[r], a[i]); for( int j=i+; j<=row; j++)
{
for(int k=col; k>i; k--) //注意点2:反向
a[j][k]-= a[j][i]/a[i][i]*a[i][k];
a[j][i]=; //注意点3:必须置0
}
} //检查是否有解
for(int i=col-,j; i<=row; i++)
{
for(j=; j<col; j++) if(fabs(a[i][j])>1e-) break;
if(j==col && fabs(a[i][col])>1e- ) return ; //无解,左边系数全0,右边值不为0。反过来是可以的,因为可能有东西不用钱呢?
} for(int i=col-; i>; i--) //从正方形最后一行开始往上。
{
for(int j=i+; j<col; j++) //消掉i+1~col-1
a[i][col]-=a[i][j]*t[j];
t[i]=a[i][col]/a[i][i]; //答案
}
return ;
} int main()
{
freopen("input.txt", "r", stdin);
int m, n; scanf("%d%d",&n,&m);
for(int i=; i<=m; i++)
for(int j=; j<=n+; j++)
scanf("%lf", &a[i][j]); //a[][n+1]存价格
int ans=Gaussian_elimination(m, n+);
if(ans==-) puts("Many solutions");
else if(ans==) puts("No solutions");
else
{
for(int i=; i<=n; i++)
printf("%d\n", (int)(t[i]+0.5));
}
return ;
}

AC代码

hihoCoder #1195 高斯消元·一的更多相关文章

  1. HihoCoder 1195 高斯消元·一(高斯消元)

    题意 https://hihocoder.com/problemset/problem/1195 思路 高斯消元是解决高元方程的一种算法,复杂度 \(O(n^3)\) . 过程大致是: 构造一个未知数 ...

  2. hihoCoder 1195 高斯消元.一

    传送门 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:喂不得了啦,那边便利店的薯片半价了! 小Hi:啥?! 小Ho:那边的便利店在打折促销啊. 小Hi:走走走, ...

  3. hihoCoder 1196 高斯消元·二

    Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...

  4. hihocoder 1196 高斯消元.二

    传送门 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中,小Hi和小Ho趁着便利店打折,买了一大堆零食.当他们结账后,看到便利店门口还有其他的活动. 店主:买了 ...

  5. hihoCoder#1196 : 高斯消元·二(开关灯问题)

    传送门 高斯消元解异或方程组 小Ho在游戏板上忙碌了30分钟,任然没有办法完成,于是他只好求助于小Hi. 小Ho:小Hi,这次又该怎么办呢? 小Hi:让我们来分析一下吧. 首先对于每一个格子的状态,可 ...

  6. [hihoCoder] 高斯消元·一 [TPLY]

    高斯消元一 题目链接 : http://hihocoder.com/problemset/problem/1195?sid=1269842 很"好aoaoaoaoaoaoa"的高斯 ...

  7. hihocoder 第五十二周 高斯消元·二【高斯消元解异或方程 难点【模板】】

    题目地址:http://hihocoder.com/contest/hiho57/problem/1 输入 第1..5行:1个长度为6的字符串,表示该行的格子状态,1表示该格子是亮着的,0表示该格子是 ...

  8. hihocoder图像算子(高斯消元)

    描述 在图像处理的技术中,经常会用到算子与图像进行卷积运算,从而达到平滑图像或是查找边界的效果. 假设原图为H × W的矩阵A,算子矩阵为D × D的矩阵Op,则处理后的矩阵B大小为(H-D+1) × ...

  9. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

随机推荐

  1. ZOJ3717 Balloon(2-SAT)

    一个很玄乎的问题,但听到2-SAT之后就豁然开朗了.题目的意思是这样的,给你n个点群,每个点群里面有两个点,你要在每个点群里面选一个点,以这些点做半径为r的圆,然后r会有一个最大值,问的就是怎么选这些 ...

  2. Xcode显示行号

  3. python--httplib模块使用

    httplib是一个相对底层的http请求模块,其上有专门的包装模块,如urllib内建模块,goto等第三方模块,但是封装的越高就越不灵 活,比如urllib模块里请求错误时就不会返回结果页的内容, ...

  4. spring_150804_controller

    实体类: package com.spring.model; public class DogPet { private int id; private String name; private in ...

  5. AC自动机总结

    AC自动机的模板 void buildAC() { while(!q.empty()) q.pop(); q.push(); while(!q.empty()) { int x=q.front();q ...

  6. 【pku2115-C Looooops】拓展欧几里得-不定方程

    http://poj.org/problem?id=2115 题解:一个变量从A开始加到B,每次加C并mod2^k,问加多少次.转化为不定方程:C*x+2^K*Y=B-A //poj2115 #inc ...

  7. Linux进程间通信(IPC)

    序言 linux下的进程通信手段基本上是从Unix平台上的进程通信手段继承而来的. 而对Unix发展做出重大贡献的两大主力AT&T的贝尔实验室及BSD(加州大学伯克利分校的伯克利软件发布中心) ...

  8. WordPress定位当前使用模版

    把下面代码插入到wp-includes/template-loader.php,66行 if($_GET[tpl]=='die'){ die($template); } 浏览任意页面,在网址后加上&a ...

  9. flex 组建重写

    flex历经几个版本的变化,其封装性也越来越规范. 今日flex的学习,总结是组件的重写. 项目中为使组件的针对性,易用性更强 ,免不了要重写组件. 要改变你的对手你的了解你的对手. 一个组件从被ne ...

  10. js调用高德API获取所在当前城市

    可以在js代码中直接调用API接口,获取所处当前城市信息,代码如下: <script type="text/javascript"> function getCurre ...