用KNN算法分类CIFAR-10图片数据
KNN分类CIFAR-10,并且做Cross Validation,CIDAR-10数据库数据如下:
knn.py : 主要的试验流程
from cs231n.data_utils import load_CIFAR10
from cs231n.classifiers import KNearestNeighbor
import random
import numpy as np
import matplotlib.pyplot as plt
# set plt params
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray' cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
x_train,y_train,x_test,y_test = load_CIFAR10(cifar10_dir)
print'x_train : ',x_train.shape
print'y_train : ',y_train.shape
print'x_test : ',x_test.shape,'y_test : ',y_test.shape #visual training example
classes = ['plane','car','bird','cat','deer','dog','forg','horse','ship','truck']
num_classes = len(classes)
samples_per_class = 7
for y,cls in enumerate(classes):
#flaznonzero return indices_array of the none-zero elements
# ten classes, y_train and y_test all in [1...10]
idxs = np.flatnonzero(y_train == y)
idxs = np.random.choice(idxs , samples_per_class, replace = False)
for i,idx in enumerate(idxs):
plt_idx = i*num_classes + y + 1
# subplot(m,n,p)
# m : length of subplot
# n : width of subplot
# p : location of subplot
plt.subplot(samples_per_class,num_classes,plt_idx)
plt.imshow(x_train[idx].astype('uint8'))
# hidden the axis info
plt.axis('off')
if i == 0:
plt.title(cls)
plt.show() # subsample data for more dfficient code execution
num_training = 5000
#range(5)=[0,1,2,3,4]
mask = range(num_training)
x_train = x_train[mask]
y_train = y_train[mask]
num_test = 500
mask = range(num_test)
x_test = x_test[mask]
y_test = y_test[mask]
#the image data has three chanels
#the next two step shape the image size 32*32*3 to 3072*1
x_train = np.reshape(x_train,(x_train.shape[0],-1))
x_test = np.reshape(x_test,(x_test.shape[0],-1))
print 'after subsample and re shape:'
print 'x_train : ',x_train.shape," x_test : ",x_test.shape
#KNN classifier
classifier = KNearestNeighbor()
classifier.train(x_train,y_train)
# compute the distance between test_data and train_data
dists = classifier.compute_distances_no_loops(x_test)
#each row is a single test example and its distances to training example
print 'dist shape : ',dists.shape
plt.imshow(dists , interpolation='none')
plt.show()
y_test_pred = classifier.predict_labels(dists,k = 5)
num_correct = np.sum(y_test_pred == y_test)
acc = float(num_correct)/num_test
print'k=5 ,The Accurancy is : ', acc #Cross-Validation #5-fold cross validation split the training data to 5 pieces
num_folds = 5
#k is params of knn
k_choice = [1,5,8,11,15,18,20,50,100]
x_train_folds = []
y_train_folds = []
x_train_folds = np.array_split(x_train,num_folds)
y_train_folds = np.array_split(y_train,num_folds) k_to_acc={} for k in k_choice:
k_to_acc[k] =[]
for k in k_choice:
print 'cross validation : k = ', k
for j in range(num_folds):
#vstack :stack the array to matrix
#vertical
x_train_cv = np.vstack(x_train_folds[0:j]+x_train_folds[j+1:])
x_test_cv = x_train_folds[j] #>>> a = np.array((1,2,3))
#>>> b = np.array((2,3,4))
#>>> np.hstack((a,b))
# horizontally
y_train_cv = np.hstack(y_train_folds[0:j]+y_train_folds[j+1:])
y_test_cv = y_train_folds[j] classifier.train(x_train_cv,y_train_cv)
dists_cv = classifier.compute_distances_no_loops(x_test_cv)
y_test_pred = classifier.predict_labels(dists_cv,k)
num_correct = np.sum(y_test_pred == y_test_cv)
acc = float(num_correct)/ num_test
k_to_acc[k].append(acc)
print k_to_acc
k_nearest_neighbor.py : knn算法的实现:
import numpy as np
from collections import Counter
class KNearestNeighbor(object):
""" a kNN classifier with L2 distance """ def __init__(self):
pass def train(self, X, y):
"""
Train the classifier. For k-nearest neighbors this is just
memorizing the training data. Inputs:
- X: A numpy array of shape (num_train, D) containing the training data
consisting of num_train samples each of dimension D.
- each row is a training example
- y: A numpy array of shape (N,) containing the training labels, where
y[i] is the label for X[i].
"""
self.X_train = X
self.y_train = y def predict(self, X, k=1, num_loops=0):
"""
Predict labels for test data using this classifier. Inputs:
- X: A numpy array of shape (num_test, D) containing test data consisting
of num_test samples each of dimension D.
- k: The number of nearest neighbors that vote for the predicted labels.
- num_loops: Determines which implementation to use to compute distances
between training points and testing points. Returns:
- y: A numpy array of shape (num_test,) containing predicted labels for the
test data, where y[i] is the predicted label for the test point X[i].
"""
if num_loops == 0:
dists = self.compute_distances_no_loops(X)
elif num_loops == 1:
dists = self.compute_distances_one_loop(X)
elif num_loops == 2:
dists = self.compute_distances_two_loops(X)
else:
raise ValueError('Invalid value %d for num_loops' % num_loops) return self.predict_labels(dists, k=k)
def compute_distances_two_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a nested loop over both the training data and the
test data. Inputs:
- X: A numpy array of shape (num_test, D) containing test data. Returns:
- dists: A numpy array of shape (num_test, num_train) where dists[i, j]
is the Euclidean distance between the ith test point and the jth training
point.
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
for j in xrange(num_train):
#####################################################################
# TODO: #
# Compute the l2 distance between the ith test point and the jth #
# training point, and store the result in dists[i, j]. You should #
# not use a loop over dimension. #
#####################################################################
#Euclidean distance
#dists[i,j] = np.sqrt(np.sum(X[i,:]-self.X_train[j,:])**2)
# use linalg make it more easy
dists[i,j] = np.linalg.norm(self.X_train[j,:]-X[i,:])
#####################################################################
# END OF YOUR CODE #
#####################################################################
return dists def compute_distances_one_loop(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a single loop over the test data. Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
#######################################################################
# TODO: #
# Compute the l2 distance between the ith test point and all training #
# points, and store the result in dists[i, :]. #
#######################################################################
#evevy row minus X[i,:] then norm it
# axis = 1 imply operations by row
dist[i,:] = np.linalg.norm(self.X_train - X[i,:],axis = 1)
#######################################################################
# END OF YOUR CODE #
#######################################################################
return dists def compute_distances_no_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using no explicit loops. Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
#########################################################################
# TODO: #
# Compute the l2 distance between all test points and all training #
# points without using any explicit loops, and store the result in #
# dists. #
# #
# You should implement this function using only basic array operations; #
# in particular you should not use functions from scipy. #
# #
# HINT: Try to formulate the l2 distance using matrix multiplication #
# and two broadcast sums. #
#########################################################################
M = np.dot(X , self.X_train.T)
te = np.square(X).sum(axis = 1)
tr = np.square(self.X_train).sum(axis = 1)
dists = np.sqrt(-2*M +tr+np.matrix(te).T)
#########################################################################
# END OF YOUR CODE #
#########################################################################
return dists def predict_labels(self, dists, k=1):
"""
Given a matrix of distances between test points and training points,
predict a label for each test point. Inputs:
- dists: A numpy array of shape (num_test, num_train) where dists[i, j]
gives the distance betwen the ith test point and the jth training point. Returns:
- y: A numpy array of shape (num_test,) containing predicted labels for the
test data, where y[i] is the predicted label for the test point X[i].
"""
num_test = dists.shape[0]
y_pred = np.zeros(num_test)
for i in xrange(num_test):
# A list of length k storing the labels of the k nearest neighbors to
# the ith test point.
closest_y = []
#########################################################################
# TODO: #
# Use the distance matrix to find the k nearest neighbors of the ith #
# testing point, and use self.y_train to find the labels of these #
# neighbors. Store these labels in closest_y. #
# Hint: Look up the function numpy.argsort. #
#########################################################################
labels = self.y_train[np.argsort(dists[i,:])].flatten()
closest_y = labels[0:k]
#########################################################################
# TODO: #
# Now that you have found the labels of the k nearest neighbors, you #
# need to find the most common label in the list closest_y of labels. #
# Store this label in y_pred[i]. Break ties by choosing the smaller #
# label. #
#########################################################################
c = Counter(closest_y)
y_pred[i] = c.most_common(1)[0][0]
#########################################################################
# END OF YOUR CODE #
######################################################################### return y_pred
data_utils.py : CIFAR-10数据的读取
import cPickle as pickle
import numpy as np
import os
from scipy.misc import imread def load_CIFAR_batch(filename):
""" load single batch of cifar """
with open(filename, 'rb') as f:
datadict = pickle.load(f)
X = datadict['data']
Y = datadict['labels']
X = X.reshape(10000, 3, 32, 32).transpose(0,2,3,1).astype("float")
Y = np.array(Y)
return X, Y def load_CIFAR10(ROOT):
""" load all of cifar """
xs = []
ys = []
for b in range(1,6):
f = os.path.join(ROOT, 'data_batch_%d' % (b, ))
X, Y = load_CIFAR_batch(f)
xs.append(X)
ys.append(Y)
Xtr = np.concatenate(xs)
Ytr = np.concatenate(ys)
del X, Y
Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, 'test_batch'))
return Xtr, Ytr, Xte, Yte def load_tiny_imagenet(path, dtype=np.float32):
"""
Load TinyImageNet. Each of TinyImageNet-100-A, TinyImageNet-100-B, and
TinyImageNet-200 have the same directory structure, so this can be used
to load any of them. Inputs:
- path: String giving path to the directory to load.
- dtype: numpy datatype used to load the data. Returns: A tuple of
- class_names: A list where class_names[i] is a list of strings giving the
WordNet names for class i in the loaded dataset.
- X_train: (N_tr, 3, 64, 64) array of training images
- y_train: (N_tr,) array of training labels
- X_val: (N_val, 3, 64, 64) array of validation images
- y_val: (N_val,) array of validation labels
- X_test: (N_test, 3, 64, 64) array of testing images.
- y_test: (N_test,) array of test labels; if test labels are not available
(such as in student code) then y_test will be None.
"""
# First load wnids
with open(os.path.join(path, 'wnids.txt'), 'r') as f:
wnids = [x.strip() for x in f] # Map wnids to integer labels
wnid_to_label = {wnid: i for i, wnid in enumerate(wnids)} # Use words.txt to get names for each class
with open(os.path.join(path, 'words.txt'), 'r') as f:
wnid_to_words = dict(line.split('\t') for line in f)
for wnid, words in wnid_to_words.iteritems():
wnid_to_words[wnid] = [w.strip() for w in words.split(',')]
class_names = [wnid_to_words[wnid] for wnid in wnids] # Next load training data.
X_train = []
y_train = []
for i, wnid in enumerate(wnids):
if (i + 1) % 20 == 0:
print 'loading training data for synset %d / %d' % (i + 1, len(wnids))
# To figure out the filenames we need to open the boxes file
boxes_file = os.path.join(path, 'train', wnid, '%s_boxes.txt' % wnid)
with open(boxes_file, 'r') as f:
filenames = [x.split('\t')[0] for x in f]
num_images = len(filenames) X_train_block = np.zeros((num_images, 3, 64, 64), dtype=dtype)
y_train_block = wnid_to_label[wnid] * np.ones(num_images, dtype=np.int64)
for j, img_file in enumerate(filenames):
img_file = os.path.join(path, 'train', wnid, 'images', img_file)
img = imread(img_file)
if img.ndim == 2:
## grayscale file
img.shape = (64, 64, 1)
X_train_block[j] = img.transpose(2, 0, 1)
X_train.append(X_train_block)
y_train.append(y_train_block) # We need to concatenate all training data
X_train = np.concatenate(X_train, axis=0)
y_train = np.concatenate(y_train, axis=0) # Next load validation data
with open(os.path.join(path, 'val', 'val_annotations.txt'), 'r') as f:
img_files = []
val_wnids = []
for line in f:
img_file, wnid = line.split('\t')[:2]
img_files.append(img_file)
val_wnids.append(wnid)
num_val = len(img_files)
y_val = np.array([wnid_to_label[wnid] for wnid in val_wnids])
X_val = np.zeros((num_val, 3, 64, 64), dtype=dtype)
for i, img_file in enumerate(img_files):
img_file = os.path.join(path, 'val', 'images', img_file)
img = imread(img_file)
if img.ndim == 2:
img.shape = (64, 64, 1)
X_val[i] = img.transpose(2, 0, 1) # Next load test images
# Students won't have test labels, so we need to iterate over files in the
# images directory.
img_files = os.listdir(os.path.join(path, 'test', 'images'))
X_test = np.zeros((len(img_files), 3, 64, 64), dtype=dtype)
for i, img_file in enumerate(img_files):
img_file = os.path.join(path, 'test', 'images', img_file)
img = imread(img_file)
if img.ndim == 2:
img.shape = (64, 64, 1)
X_test[i] = img.transpose(2, 0, 1) y_test = None
y_test_file = os.path.join(path, 'test', 'test_annotations.txt')
if os.path.isfile(y_test_file):
with open(y_test_file, 'r') as f:
img_file_to_wnid = {}
for line in f:
line = line.split('\t')
img_file_to_wnid[line[0]] = line[1]
y_test = [wnid_to_label[img_file_to_wnid[img_file]] for img_file in img_files]
y_test = np.array(y_test) return class_names, X_train, y_train, X_val, y_val, X_test, y_test def load_models(models_dir):
"""
Load saved models from disk. This will attempt to unpickle all files in a
directory; any files that give errors on unpickling (such as README.txt) will
be skipped. Inputs:
- models_dir: String giving the path to a directory containing model files.
Each model file is a pickled dictionary with a 'model' field. Returns:
A dictionary mapping model file names to models.
"""
models = {}
for model_file in os.listdir(models_dir):
with open(os.path.join(models_dir, model_file), 'rb') as f:
try:
models[model_file] = pickle.load(f)['model']
except pickle.UnpicklingError:
continue
return models
通过 cv,最优的 k 值为7,accurancy=0.282,太低了,明天用cnn重复这个实验...
用KNN算法分类CIFAR-10图片数据的更多相关文章
- Opencv学习之路—Opencv下基于HOG特征的KNN算法分类训练
在计算机视觉研究当中,HOG算法和LBP算法算是基础算法,但是却十分重要.后期很多图像特征提取的算法都是基于HOG和LBP,所以了解和掌握HOG,是学习计算机视觉的前提和基础. HOG算法的原理很多资 ...
- KNN算法——分类部分
1.核心思想 如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.也就是说找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该 ...
- KNN算法[分类算法]
kNN(k-近邻)分类算法的实现 (1) 简介: (2)算法描述: (3) <?php /* *KNN K-近邻方法(分类算法的实现) */ /* *把.txt中的内容读到数组中保存,$file ...
- 机器学习实战(笔记)------------KNN算法
1.KNN算法 KNN算法即K-临近算法,采用测量不同特征值之间的距离的方法进行分类. 以二维情况举例: 假设一条样本含有两个特征.将这两种特征进行数值化,我们就可以假设这两种特种分别 ...
- 吴裕雄--天生自然python机器学习实战:K-NN算法约会网站好友喜好预测以及手写数字预测分类实验
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window ...
- 机器学习【三】k-近邻(kNN)算法
一.kNN算法概述 kNN算法是用来分类的,其依据测量不同特征值之间的距离,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似).其精度高,对异常值不敏 ...
- 运用kNN算法识别潜在续费商家
背景与目标 Youzan 是一家SAAS公司,服务于数百万商家,帮助互联网时代的生意人私有化顾客资产.拓展互联网客群.提高经营效率.现在,该公司希望能够从商家的交易数据中,挖掘出有强烈续费倾向的商家, ...
- KNN算法的R语言实现
近邻分类 简言之,就是将未标记的案例归类为与它们最近相似的.带有标记的案例所在的类. 应用领域: 1.计算机视觉:包含字符和面部识别等 2.推荐系统:推荐受众喜欢电影.美食和娱乐等 3.基因工程:识别 ...
- 【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
随机推荐
- [转载]U3d常规性能优化技巧
以下技巧并不是必须的,但是对于想要提升游戏性能的人来说应该还是很不错的. 优化的常规技巧 n 剖析你的游戏. 不要花费时间来优化那些晦涩的代码或者缩减图形文件的大小,除非这是你游戏的瓶颈.第一次剖析你 ...
- LevelDB系列之整体架构
LevelDb本质上是一套存储系统以及在这套存储系统上提供的一些操作接口.为了便于理解整个系统及其处理流程,我们可以从两个不同的角度来看待LevleDb:静态角度和动态角度.从静态角度,可以假想整个系 ...
- TASK_INTERRUPTIBLE 和TASK_UNINTERRUPTIBLE
TASK_INTERRUPTIBLE 和TASK_UNINTERRUPTIBLE TASK_INTERRUPTIBLE 和TASK_UNINTERRUPTIBLE 的区别 TASK_INTERRUPT ...
- Android TextView 文字居中
有2种方法可以设置TextView文字居中: 一:在xml文件设置:android:gravity="center" 二:在程序中设置:m_TxtTitle.setGravity( ...
- ajax:serialize() 获取表单集合
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 使用 tar 命令管理存档文件
tar命令用于将大型文件集汇集为一个文件(存档) tar的三种操作:c(创建存档).t(列出存档的内容).x提取存档 tar的常用选项:f(要操作的存档文件名).v(可视化操作) 创建压缩的tar存档 ...
- 解决COS、FileUpload上传文件时中文文件名乱码问题
方法: MultipartParser mp = new MultipartParser(request, 10*1024*1024); mp.setEncoding("GBK") ...
- 给 Gradle 配置国内的 Maven 仓库,提高 jar 包下载速度。
最近使用 gradle 跑一些 spring 的示例,在下载一些 jar 的时候速度特别慢,因为是访问的国外的 maven 仓库. 开源中国提供了国内的 maven 库,所以可以在 gradle 里设 ...
- 干货:yii日志功能详解
转载请注明来自souldak,微博:@evagle 一.基本日志功能 详细的介绍查看官网的document:http://www.yiiframework.com/doc/guide/1.1/en/t ...
- Linux资源控制-CPU和内存【转】
转自:http://www.cnblogs.com/wang_yb/p/3942208.html 主要介绍Linux下, 如果对进程的CPU和内存资源的使用情况进行控制的方法. CPU资源控制 每个进 ...