Python实现Apriori

运行环境

  • Pyhton3

计算过程

st=>start: 开始
e=>end: 结束
op1=>operation: 读入数据
op2=>operation: 递归生成频繁项集
op3=>operation: 关联规则挖掘
op4=>operation: 输出结果 st->op1->op2->op3->op4->e

输入样例

/* Apriori.txt */
文本编号 词列表(以空格分隔)
1 消防员 冲进 火场 救出 男童
2 公务员 患 癌症 保持 在岗
3 消防员 多次 冲进 火场 救人 不幸 身亡
4 老人 成功 进行 免费 白内障 手术
5 海豚 误 吞 排球 后 手术 成功 取出
6 6旬 老人 跳楼 自杀 身亡
7 男子 跳楼 自杀 身亡
8 疑犯 枪杀 出租车 司机
9 男子 枪杀 妻子 后 自杀
10 医师 误 把 肾脏 当 肝脏 致人 身亡
11 癌症 老人 成功 手术
12 男子 枪杀 司机 后 喝药 自杀
13 癌症 医师 保持 手术 清醒
14 男子 跳楼 自杀
15 男子 枪杀 老人 后 自杀
16 消防员 冲进 火场 将 男童 救出
17 出租车 司机 免费 搭载 老人
18 男子 误 杀 弟媳 后 自杀 身亡
19 医师 误 把 患者 肝脏 捅破 致人 身亡
20 6旬 老人 火场 救人 不幸 身亡

代码实现

# -*- coding: utf-8 -*-
__author__ = 'Wsine' def loadDataSet(fileName):
attrTemp = []
with open(fileName) as fr:
for line in fr.readlines()[1:]:
words = line.strip().split('\t')[1].split()
attrTemp.extend(words)
attr = list(set(attrTemp))
dataSet = []
with open(fileName) as fr:
for line in fr.readlines()[1:]:
words = line.strip().split('\t')[1].split()
data = []
for word in words:
for index, _word in enumerate(attr):
if word == _word:
data.append(index)
break
dataSet.append(data)
return dataSet, attr def createC1(dataSet):
"""
输入:数据集
输出:所有大小为1的候选项集合C1
"""
C1 = []
for transaction in dataSet:
for item in transaction:
if not [item] in C1:
C1.append([item])
C1.sort()
return list(map(frozenset, C1)) def scanD(D, Ck, minSupport):
"""
输入:数据集集合, 候选项集, 最小支持度
输出:最频繁项集的支持度
"""
ssCnt = {}
for tid in D:
for can in Ck:
if can.issubset(tid):
if not can in ssCnt:
ssCnt[can] = 1
else:
ssCnt[can] += 1
numItems = float(len(D))
retList = []
supportData = {}
for key in ssCnt:
support = ssCnt[key] / numItems
if support >= minSupport:
retList.insert(0, key)
supportData[key] = support
return retList, supportData def aprioriGen(Lk, k):
"""
输入:频繁项集列表, 项集元素个数
输出:合并后的项集列表
"""
retList = []
lenLk = len(Lk)
for i in range(lenLk):
for j in range(i+1, lenLk):
L1 = list(Lk[i])[:k-2]
L2 = list(Lk[j])[:k-2]
L1.sort()
L2.sort()
if L1 == L2:
retList.append(Lk[i] | Lk[j])
return retList def apriori(dataSet, minSupport=0.5):
"""
输入:数据集, 最小支持度
输出:候选项集列表
"""
C1 = createC1(dataSet)
D = list(map(set, dataSet))
L1, supportData = scanD(D, C1, minSupport)
L = [L1]
k = 2
while (len(L[k-2]) > 0):
Ck = aprioriGen(L[k-2], k)
Lk, supK = scanD(D, Ck, minSupport)
supportData.update(supK)
L.append(Lk)
k += 1
return L, supportData def calcConf(freqSet, H, supportData, br1, minConf=0.7):
"""
输入:频繁项集, 所有项集, 支持度数据, 通过检查的bigRuleList, 最小置信度
输出:满足最小置信度要求的规则列表
"""
prunedH = []
for conseq in H:
conf = supportData[freqSet] / supportData[freqSet - conseq]
if conf >= minConf:
#print(freqSet - conseq, '-->', conseq, 'conf:', conf)
br1.append((freqSet - conseq, conseq, conf))
prunedH.append(conseq)
return prunedH def rulesFromConseq(freqSet, H, supportData, br1, minConf=0.7):
"""
输入:频繁项集, 所有项集, 支持度数据, 通过检查的bigRuleList, 最小置信度
描述:生成更多的关联规则
"""
m = len(H[0])
if (len(freqSet) > (m + 1)):
Hmp1 = aprioriGen(H, m + 1)
Hmp1 = calcConf(freqSet, Hmp1, supportData, br1, minConf)
if (len(Hmp1) > 1):
rulesFromConseq(freqSet, Hmp1, supportData, br1, minConf) def generateRules(L, supportData, minConf=0.7):
"""
输入:频繁项集列表, 包含频繁项集支持数据的字典, 最小置信度
输出:置信度规则列表
"""
bigRuleList = []
for i in range(1, len(L)):
for freqSet in L[i]:
H1 = [frozenset([item]) for item in freqSet]
if (i > 1):
rulesFromConseq(freqSet, H1, supportData, bigRuleList, minConf)
else:
calcConf(freqSet, H1, supportData, bigRuleList, minConf)
return bigRuleList def printRules(rules, attr):
for rule in rules:
ruleFrom = []
ruleFromSet = set(rule[0])
while len(ruleFromSet) > 0:
ruleFrom.append(attr[ruleFromSet.pop()])
ruleTo = []
ruleToSet = set(rule[1])
while len(ruleToSet) > 0:
ruleTo.append(attr[ruleToSet.pop()])
print(ruleFrom, '-->', ruleTo)
print('\tconf: ', rule[-1]) def main():
dataSet, attr = loadDataSet('Apriori.txt')
L, supportData = apriori(dataSet, minSupport=0.2)
print('二项集', L[1])
print('三项集', L[2])
rules = generateRules(L, supportData, minConf=0.2)
printRules(rules, attr) if __name__ == '__main__':
main()

输出样例

二项集 [frozenset({32, 39}), frozenset({32, 46}), frozenset({46, 39})]
三项集 [frozenset({32, 46, 39})]
['自杀'] --> ['男子']
conf: 0.8571428571428572
['男子'] --> ['自杀']
conf: 1.0
['后'] --> ['男子']
conf: 0.8
['男子'] --> ['后']
conf: 0.6666666666666667
['自杀'] --> ['后']
conf: 0.5714285714285715
['后'] --> ['自杀']
conf: 0.8
['自杀'] --> ['男子', '后']
conf: 0.5714285714285715
['后'] --> ['男子', '自杀']
conf: 0.8
['男子'] --> ['后', '自杀']
conf: 0.6666666666666667

Python实现Apriori的更多相关文章

  1. Python --深入浅出Apriori关联分析算法(二) Apriori关联规则实战

    上一篇我们讲了关联分析的几个概念,支持度,置信度,提升度.以及如何利用Apriori算法高效地根据物品的支持度找出所有物品的频繁项集. Python --深入浅出Apriori关联分析算法(一) 这次 ...

  2. 基于Python的机器学习实战:Apriori

    目录: 1.关联分析 2. Apriori 原理 3. 使用 Apriori 算法来发现频繁集 4.从频繁集中挖掘关联规则 5. 总结 1.关联分析  返回目录 关联分析是一种在大规模数据集中寻找有趣 ...

  3. 数据挖掘入门系列教程(五)之Apriori算法Python实现

    数据挖掘入门系列教程(五)之Apriori算法Python实现 加载数据集 获得训练集 频繁项的生成 生成规则 获得support 获得confidence 获得Lift 进行验证 总结 参考 数据挖 ...

  4. Python 和 R 数据分析/挖掘工具互查

    如果大家已经熟悉python和R的模块/包载入方式,那下面的表查找起来相对方便.python在下表中以模块.的方式引用,部分模块并非原生模块,请使用 pip install * 安装:同理,为了方便索 ...

  5. Python 数据挖掘 工具包整理

    连接器与io 数据库 类别 Python R MySQL mysql-connector-python(官方) RMySQL Oracle cx_Oracle ROracle MongoDB pymo ...

  6. 【机器学习实战】第11章 使用 Apriori 算法进行关联分析

    第 11 章 使用 Apriori 算法进行关联分析 关联分析 关联分析是一种在大规模数据集中寻找有趣关系的任务. 这些关系可以有两种形式: 频繁项集(frequent item sets): 经常出 ...

  7. R包和python对应的库

    数据库 类别 Python R MySQL mysql-connector-python(官方) RMySQL Oracle cx_Oracle ROracle Redis redis rredis ...

  8. Apriori算法的原理与python 实现。

    前言:这是一个老故事, 但每次看总是能从中想到点什么.在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售.但是这个奇怪的举措却使尿布和啤酒的销量双双增加了.这不是一个笑话,而是发生在美国沃尔玛 ...

  9. Apriori算法Python实现

    Apriori如果数据挖掘算法的头发模式挖掘鼻祖,从60年代开始流行,该算法非常简单朴素的思维.首先挖掘长度1频繁模式,然后k=2 这些频繁模式的长度合并k频繁模式.计算它们的频繁的数目,并确保其充分 ...

随机推荐

  1. asp.net 在线人数

    很网站都有在线人数,这一功能无处不在.现在,我们就介绍在.NET中一个简单明了的方法来统计在线用户的多少,该方法的特点就是充分的利用了ASP.NET的特点,结合global.asax文件,用Appli ...

  2. hbase 新增节点

    关于Hbase的集群管理 http://www.linuxidc.com/Linux/2012-07/65909.htm 1.如果只增加集群的存储量,建议增加Hadoop datanode节点. 方法 ...

  3. poj2027

    #include <stdio.h> int main(){ int n; int a,b; while(~scanf("%d",&n)){ while(n-- ...

  4. JS时间

    function checkStartTime(){ var d1 = new Date(); var endTime = document.getElementById("secCreat ...

  5. 使用jquery时弹出[object HTMLImageElement]问题

    本打算写一个轮播图,但是获取到图像后想改变图片地址,却jq方法各种不能实现,开始以为是jq文件弄错了,用百度的cdn试了下还是报错. 于是开始了alert调试. 我是用的jquery获取类 var a ...

  6. 基于MVC设计模式的两种软件架构简介

    第一种模式,可处理组合命令,具有撤销(Undo)和重做(Redo)功能,支持多种数据库类型     1.Action采用组合模式,既可以代表一个简单的动作,也可以代表一组动作组合.List<Ac ...

  7. 最新CSS3常用30种选择器总结(适合初学者)

     1. *:通用元素选择器 * { margin: 0; padding: 0; } *选择器是选择页面上的全部元素,上面的代码作用是把全部元素的margin和padding设为0,最基本的清除默认C ...

  8. Android Virtual Devices代理上网

    本机电脑是使用代理上网,然后要在avd中要连接互联网,设置步骤如下: Click on Menu Click on Settings Click on Wireless & Networks ...

  9. Silverlight动态设置WCF服务Endpoint

    2013-02-02 05:57 by jv9, 1763 阅读, 3 评论, 收藏, 编辑 去年12月收到一位朋友的邮件,咨询Silverlight使用WCF服务,应用部署后一直无法访问的问题,通过 ...

  10. Ubuntu通过APT配置开发环境

    apt-get install vim apt-get install ssh apt-get install apache2 apt-get install redis-server apt-get ...