LIS两种写法

O(n^2)

dp[i]表示以a[i]结尾的为LIS长度

 #include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
typedef pair <int, int> P;
const int N = 2e3 + ;
int dp[N];
int a[N]; int main()
{
int n;
while(~scanf("%d", &n)) {
memset(dp, , sizeof(dp));
int res = ;
for(int i = ; i <= n; ++i) {
scanf("%d", a + i);
dp[i] = ;
for(int j = ; j < i; ++j) {
if(a[i] > a[j])
dp[i] = max(dp[i], dp[j] + );
}
res = max(res, dp[i]);
}
printf("%d\n", res);
}
return ;
}

O(nlogn)

dp[i]表示LIS长度为i的最后一个元素

 //#pragma comment(linker, "/STACK:102400000, 102400000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
typedef pair <int, int> P;
const int N = 1e5 + ;
int dp[N], a[N], inf = 1e6; int main()
{
int n;
while(~scanf("%d", &n)) {
for(int i = ; i <= n + ; ++i)
dp[i] = inf;
for(int i = ; i <= n; ++i) {
scanf("%d", a + i);
*lower_bound(dp, dp + n, a[i]) = a[i];
}
printf("%d\n", lower_bound(dp, dp + n, inf) - dp);
}
return ;
}

LIS (最长上升子序列)的更多相关文章

  1. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

  2. POJ - 3903 Stock Exchange(LIS最长上升子序列问题)

    E - LIS Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u   Descripti ...

  3. hdu 5256 序列变换(LIS最长上升子序列)

    Problem Description 我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增.其中无论是修改前还是修改后,每个元素都必须是整数. 请输出最少需要修改多 ...

  4. POJ 3903 Stock Exchange (E - LIS 最长上升子序列)

    POJ 3903    Stock Exchange  (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action ...

  5. 动态规划模板1|LIS最长上升子序列

    LIS最长上升子序列 dp[i]保存的是当前到下标为止的最长上升子序列的长度. 模板代码: int dp[MAX_N], a[MAX_N], n; int ans = 0; // 保存最大值 for ...

  6. POJ 1887 Testingthe CATCHER (LIS:最长下降子序列)

    POJ 1887Testingthe CATCHER (LIS:最长下降子序列) http://poj.org/problem?id=3903 题意: 给你一个长度为n (n<=200000) ...

  7. LIS最长上升子序列O(n^2)与O(nlogn)的算法

    动态规划 最长上升子序列问题(LIS).给定n个整数,按从左到右的顺序选出尽量多的整数,组成一个上升子序列(子序列可以理解为:删除0个或多个数,其他数的顺序不变).例如序列1, 6, 2, 3, 7, ...

  8. LIS 最长递增子序列

    一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...

  9. 动态规划——E (LIS())最长上升子序列

    E - LIS Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  10. LIS 最长递增子序列问题

    一,    最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1< ...

随机推荐

  1. HDU1495 非常可乐

    解题思路:简单的宽搜,见代码: #include<cstdio> #include<cstring> #include<algorithm> #include< ...

  2. 第三集 欠拟合与过拟合的概念、局部加权回归、logistic回归、感知器算法

    课程大纲 欠拟合的概念(非正式):数据中某些非常明显的模式没有成功的被拟合出来.如图所示,更适合这组数据的应该是而不是一条直线. 过拟合的概念(非正式):算法拟合出的结果仅仅反映了所给的特定数据的特质 ...

  3. T-SQL备忘(3):分组合并

    --CREATE TABLE test(code varchar(50), [name] varchar(10),[count] int ) --INSERT test SELECT '001' , ...

  4. nginx的配置,要求根据不同的来路域名,发送到不同的端口去处理

    这一台电脑上既有tomcat 也有 apache,他俩是没有办法同时享用80端口的.我现在让tomcat用8088,apache用8080,然后让nginx用80,这样nginx在收到请求后,根据不同 ...

  5. php查询汉字的拼音首字母的函数

    function getfirst($str, $charset='utf8'){         $dict=array(         'a'=>0xB0C4,         'b'=& ...

  6. distinguish and differentiate

    According to Cambridge Dictionary distinguish:to recognize or understand the difference between two ...

  7. hdu 5423 Rikka with Tree(dfs)bestcoder #53 div2 1002

    题意: 输入一棵树,判断这棵树在以节点1为根节点时,是否是一棵特殊的树. 相关定义: 1.  定义f[A, i]为树A上节点i到节点1的距离,父节点与子节点之间的距离为1. 2.  对于树A与树B,如 ...

  8. Android 动画深入解析

    http://blog.csdn.net/rain_butterfly/article/details/39642613

  9. Eclipse插件安装的三种方法

    转自:http://www.blogjava.net/tangzurui/archive/2008/06/30/211669.html  整理了一下格式. (前两种安装方式以多国语言包的安装为例) 1 ...

  10. Solaris系统管理(二)资源管理与网络配置

    上一篇主要总结了Solaris安装后需要进行的一些设置,如ssh,pkgutil管理依赖,vim安装. 这一篇将会对Solaris资源管理与网络配置进行总结. 四 Solaris 系统管理 1,查询总 ...