LIS两种写法

O(n^2)

dp[i]表示以a[i]结尾的为LIS长度

 #include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
typedef pair <int, int> P;
const int N = 2e3 + ;
int dp[N];
int a[N]; int main()
{
int n;
while(~scanf("%d", &n)) {
memset(dp, , sizeof(dp));
int res = ;
for(int i = ; i <= n; ++i) {
scanf("%d", a + i);
dp[i] = ;
for(int j = ; j < i; ++j) {
if(a[i] > a[j])
dp[i] = max(dp[i], dp[j] + );
}
res = max(res, dp[i]);
}
printf("%d\n", res);
}
return ;
}

O(nlogn)

dp[i]表示LIS长度为i的最后一个元素

 //#pragma comment(linker, "/STACK:102400000, 102400000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
typedef pair <int, int> P;
const int N = 1e5 + ;
int dp[N], a[N], inf = 1e6; int main()
{
int n;
while(~scanf("%d", &n)) {
for(int i = ; i <= n + ; ++i)
dp[i] = inf;
for(int i = ; i <= n; ++i) {
scanf("%d", a + i);
*lower_bound(dp, dp + n, a[i]) = a[i];
}
printf("%d\n", lower_bound(dp, dp + n, inf) - dp);
}
return ;
}

LIS (最长上升子序列)的更多相关文章

  1. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

  2. POJ - 3903 Stock Exchange(LIS最长上升子序列问题)

    E - LIS Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u   Descripti ...

  3. hdu 5256 序列变换(LIS最长上升子序列)

    Problem Description 我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增.其中无论是修改前还是修改后,每个元素都必须是整数. 请输出最少需要修改多 ...

  4. POJ 3903 Stock Exchange (E - LIS 最长上升子序列)

    POJ 3903    Stock Exchange  (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action ...

  5. 动态规划模板1|LIS最长上升子序列

    LIS最长上升子序列 dp[i]保存的是当前到下标为止的最长上升子序列的长度. 模板代码: int dp[MAX_N], a[MAX_N], n; int ans = 0; // 保存最大值 for ...

  6. POJ 1887 Testingthe CATCHER (LIS:最长下降子序列)

    POJ 1887Testingthe CATCHER (LIS:最长下降子序列) http://poj.org/problem?id=3903 题意: 给你一个长度为n (n<=200000) ...

  7. LIS最长上升子序列O(n^2)与O(nlogn)的算法

    动态规划 最长上升子序列问题(LIS).给定n个整数,按从左到右的顺序选出尽量多的整数,组成一个上升子序列(子序列可以理解为:删除0个或多个数,其他数的顺序不变).例如序列1, 6, 2, 3, 7, ...

  8. LIS 最长递增子序列

    一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...

  9. 动态规划——E (LIS())最长上升子序列

    E - LIS Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  10. LIS 最长递增子序列问题

    一,    最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1< ...

随机推荐

  1. mysql 存储过程 事务; mysql的事务中包含一个存储过程

    在asp.net结合mysql的开发中,我平时用到的事务处理是 使用 TransactionOptions  来进行处理 TransactionOptions transactionOption = ...

  2. QCon 2015 阅读笔记 - 团队建设

    QCon 2015阅读笔记 QCon 2015 阅读笔记 - 移动开发最佳实践 QCon 2015 阅读笔记 - 团队建设 中西对话:团队管理的五项理论和实战 - 谢欣.董飞(今日头条,LinkedI ...

  3. Heritrix源码分析(七) Heritrix总体介绍(转)

    本博客属原创文章,欢迎转载!转载请务必注明出处:http://guoyunsky.iteye.com/blog/642794         本博客已迁移到本人独立博客: http://www.yun ...

  4. Linux下的Memcache安装

    Linux下Memcache服务器端的安装服务器端主要是安装memcache服务器端,目前的最新版本是 memcached-1.3.0 .下载:http://www.danga.com/memcach ...

  5. makefile实例(1)-helloworld

    简单makefile实例 1,源文件: main.cpp #include <stdio.h> int main() { printf("Hello World\n") ...

  6. ASP.NET Web API 帮助(help)页面上没有 Test API按钮的解决方法

    参与一个web API项目时发现它的help页面特别好用,不仅可以根据webapi的方法和注释自动生成帮助文档以方便查阅,还可以在这个页面上测试webapi方法.于是在自己新建项目时也打算将这个hel ...

  7. Java IO读写大文件的几种方式及测试

    读取文件大小:1.45G 第一种,OldIO: public static void oldIOReadFile() throws IOException{ BufferedReader br = n ...

  8. C++模板实例掌握

    前段时间重新学习C++,主要看C++编程思想和C++设计新思维.对模版的使用有了更进一层的了解,特总结如下: 下面列出了模版的常用情况:  << '\n';} //参考:http://ww ...

  9. Locker

    题意: 有2个数字串,每次可以变化1-3位(每位+1或-1(0-9,9-0)可循环),求由1串变到2串的最小用的次数. 分析: dp[i][num]表示变到第i位时最后两位组成的数是num时最小次数( ...

  10. oracle 查看表的相关信息

    1.查看当前用户的表 SELECT * FROM user_tables; 2.查看指定用户的表 SELECT * FROM all_tables WHERE owner = 'SYS';