HD1060Leftmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 11011 Accepted Submission(s): 4214
Problem Description
Given a positive integer N, you should output the leftmost digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the leftmost digit of N^N.
Sample Input
2
3
4
Sample Output
2
2 Hint In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2.
In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2. 一开始用java做,果断超时,不过用java给我的感觉是,几天没用,就感觉有点陌生了,把这个代码记录下来,还是挺不错的:import java.math.BigInteger;
import java.util.Scanner;
public class Main{
public static void main(String[] args) {
int i;
Scanner cin = new Scanner(System.in);
int n = cin.nextInt();
for(i=0;i<n;i++){
BigInteger b =cin.nextBigInteger();
int c = b.intValue();
b = b.pow(c);
String e = b.toString();
System.out.println(e.charAt(0));
}
}
}
题解思路,利用公式n=10^x*m=>lgn=x+lg(m);
具体步骤:
1.对M=N^N两边取对数得log10(M)=N*log10(N),即M=10^(N*log10(N))
2.要求M的最高位,则令N*log10(N)=a+b;b是小数(0<=b<1),a是整数。
3.因为10的任何整数次幂首位一定为1,所以,M的首位只和N*log10(N)的小数部分有关,
#include<iostream>
using namespace std;
int main(){
int n,i,result;
long long s;
cin>>n;
while(n--){
cin>>s;
double x1 = s*log10( 1.0*s);
double x2 = x1 - (long long)x1;
result = 0;
result = (int)pow(10.0,x2);
cout<<result<<endl;
}
return 0;
}
所以只用求10^b就可以了。(1<=10^b<10)
4.求出b也很简单,只要用double类型的(N*log10(N))去减去long long类型的(N*log10(N))。
HD1060Leftmost Digit的更多相关文章
- [LeetCode] Nth Digit 第N位
Find the nth digit of the infinite integer sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... Note: n i ...
- [LeetCode] Number of Digit One 数字1的个数
Given an integer n, count the total number of digit 1 appearing in all non-negative integers less th ...
- [Leetcode] Number of Digit Ones
Given an integer n, count the total number of digit 1 appearing in all non-negative integers less th ...
- 【Codeforces715C&716E】Digit Tree 数学 + 点分治
C. Digit Tree time limit per test:3 seconds memory limit per test:256 megabytes input:standard input ...
- kaggle实战记录 =>Digit Recognizer
date:2016-09-13 今天开始注册了kaggle,从digit recognizer开始学习, 由于是第一个案例对于整个流程目前我还不够了解,首先了解大神是怎么运行怎么构思,然后模仿.这样的 ...
- [UCSD白板题] The Last Digit of a Large Fibonacci Number
Problem Introduction The Fibonacci numbers are defined as follows: \(F_0=0\), \(F_1=1\),and \(F_i=F_ ...
- Last non-zero Digit in N!(阶乘最后非0位)
Last non-zero Digit in N! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...
- POJ3187Backward Digit Sums[杨辉三角]
Backward Digit Sums Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6350 Accepted: 36 ...
- Number of Digit One
Given an integer n, count the total number of digit 1 appearing in all non-negative integers less th ...
随机推荐
- Mac下配置idk
Mac下配置java #以下进入啰嗦模式演示添加jdk7 #下载jdk7的mac版 #官网下载地址http://www.oracle.com/technetwork/java/javase/downl ...
- bzoj4197
这题现场想的思路方向都是对的,但限于现场和实力因素没能A 很显然我们会想到质因数的选取 如果某个质数p被W选了,那G就不能选含有质因子p的数 因此我们不难想到状压质数的选取情况,令f[i][j]为w质 ...
- [转载] mysql5.6 删除之前的ibdata1文件后再重新生成,遇到[Warning] Info table is not ready to be used. Table 'mysql.slave_master_info' cannot be opened.问题
[转载] mysql5.6 删除之前的ibdata1文件后再重新生成,遇到[Warning] Info table is not ready to be used. Table 'mysql.slav ...
- Java 图片提取RGB数组 RGBOfCharMaps (整理)
package demo; /** * Java 图片提取RGB数组 RGBOfCharMaps (整理) * 声明: * 和ImageCombining配合使用的工具,这里是提取图片的R.G.B生成 ...
- MIPI DSI 和 D-PHY 初始化序列
MIPI DSI 和 D-PHY 初始化序列 -- 深圳 南山平山村 曾剑锋 参考文档: i.MX 6Dual/6Quad Multimedia Applications Processor Refe ...
- watch 命令实时命令执行监控
watch 命令 watch -d -n 1 'df; ls -FlAt /path' 在使用这条命令时你需要替换其中的 /path 部分,watch 是实时监控工具,-d 参数会高亮 显示变化的 ...
- RequireJS入门(一) 转
RequireJS由James Burke创建,他也是AMD规范的创始人. RequireJS会让你以不同于往常的方式去写JavaScript.你将不再使用script标签在HTML中引入JS文件,以 ...
- C# winform 自定义控件
近来因为项目的问题,开始研究winform自定义控件,这篇主要是将自定义控件的属性在属性编辑器中可编辑,如果你对自定义控件比较了解的,就不用继续往下看了 首先,我创建了一个类UserButton,继承 ...
- ubuntu myeclipse 启动时提示 A Java Runtime Environment (JRE) or Java Development Kit (JDK) must be avail ....
jdk已经安装过但是启动eclipse时提示“A Java Runtime Environment (JRE) or Java Development Kit (JDK) must be avail ...
- CMDB反思4
CMDB模型设计2 http://blog.vsharing.com/xqscool/A1275233.html 估计大家看到破子的这两篇都有点晕哈,我也有点晕. 两篇对比来看. 第1处,属性部分 ...