CF700C (枚举+tarjan)
Problem Break up (CF700C)
题目大意
给一张n个点,m条边的无向图,有边权,和起点S,终点T。 (n<=1000 , m<=30000)
要求最多割掉2条边,使得S到T不连通。
输出最小代价以及方案。
解题分析
如果只是割掉1条边,那么就是求割边了。
如果要割掉2条边,一个自然的思路就是枚举一条边后再求割点,这样复杂度是O(m ^2)的,显然会超时。
再考虑并不需要枚举每一条边,只需要求一条S到T的路径,枚举这条路径上的边即可。因为若要不连通,必定要割掉这条路径上的某一条边
复杂度O(n*m)。
参考程序
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <string>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")
using namespace std; #define N 100008
#define V 1008
#define E 60008
#define lson l,m,rt<<1
#define rson m,r+1,rt<<1|1
#define clr(x,v) memset(x,v,sizeof(x));
#define LL long long const int mo = ;
const int inf = 0x3f3f3f3f;
const int INF = ;
/**************************************************************************/ int n,m,S,T,tmp;
int vis[V],path[V],dfn[V],low[V],road[V],bridge[E];
int ans;
int ANS[V];
struct line{
int u,v,w,nt;
}eg[E];
int sum,lt[V]; void adt(int u,int v,int w){
eg[++sum]=(line){u,v,w,lt[u]};
lt[u]=sum;
}
void add(int u,int v,int w){
adt(u,v,w); adt(v,u,w);
} bool dfs(int u){
vis[u]=;
if (u==T) return true;
for (int i=lt[u];i;i=eg[i].nt){
int v=eg[i].v;
if (vis[v]) continue;
if (dfs(v)){
path[++path[]]=i/;
return true;
}
}
return false;
} bool dfs_2(int u,int del){
vis[u]=;
if (u==T) return true;
for (int i=lt[u];i;i=eg[i].nt){
int v=eg[i].v;
if (i/==del) continue;
if (vis[v]) continue;
if (dfs_2(v,del)){
road[++road[]]=i/;
return true;
}
}
return false;
}
void tarjan(int u,int fa,int del){
dfn[u]=low[u]=++tmp;
int flag=;
for (int i=lt[u];i;i=eg[i].nt){
int v=eg[i].v;
if (i/==del) continue;
if (v==fa && !flag){
flag=;
continue;
}
if (!dfn[v]){
tarjan(v,u,del);
low[u]=min(low[u],low[v]);
if (dfn[u]<low[v]) bridge[i/]=;
}
else low[u]=min(low[u],dfn[v]);
}
} int main(){
scanf("%d %d",&n,&m);
scanf("%d %d",&S,&T);
sum=;
for (int i=;i<=m;i++){
int u,v,w;
scanf("%d %d %d",&u,&v,&w);
add(u,v,w);
} clr(vis,);
clr(path,);
if (!dfs(S)) { printf("0\n0\n"); return ; }
else
{
ans=INF;
for (int ii=;ii<=path[];ii++){
clr(bridge,);
clr(vis,);
clr(road,);
clr(dfn,);
tmp=;
for (int i=;i<=n;i++)
if (!dfn[i])
tarjan(i,,path[ii]);
if (!dfs_2(S,path[ii])){
if (eg[path[ii]*].w<ans){
ans = eg[path[ii]*].w;
ANS[]=;
ANS[]=path[ii];
}
}
else
{
for (int i=;i<=road[];i++){
if (bridge[road[i]]){
if (eg[road[i]*].w+eg[path[ii]*].w<ans){
ans=eg[road[i]*].w+eg[path[ii]*].w;
ANS[]=;
ANS[]=road[i];
ANS[]=path[ii];
}
}
}
}
}
if (ans==INF) printf("-1\n");
else
{
printf("%d\n%d\n",ans,ANS[]);
for (int i=;i<=ANS[];i++) printf("%d%c",ANS[i],i!=ANS[]?' ':'\n');
}
}
}
CF700C (枚举+tarjan)的更多相关文章
- poj3713 Transferring Sylla 枚举+tarjan判割点
其实就是判断是否为三连通图 三连通图指的是去掉3个点就不连通的图,但是并没有直接求三连通的算法.著名的Tarjan算法可以求解连通和割点,再枚举删除一个点就能达到三连通的目的. 先看用例2,是由用例1 ...
- 有向图强连通分量的Tarjan算法
有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...
- [学习笔记]tarjan求割点
都口胡了求割边,就顺便口胡求割点好了QAQ 的定义同求有向图强连通分量. 枚举当前点的所有邻接点: 1.如果某个邻接点未被访问过,则访问,并在回溯后更新 2.如果某个邻接点已被访问过,则更新 对于当前 ...
- [学习笔记]tarjan求割边
上午打模拟赛的时候想出了第三题题解,可是我不会求割边只能暴力判割边了QAQ 所以,本文介绍求割边(又称桥). 的定义同求有向图强连通分量. 枚举当前点的所有邻接点: 1.如果某个邻接点未被访问过,则访 ...
- 【BZOJ-1179】Atm Tarjan + SPFA
1179: [Apio2009]Atm Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 2407 Solved: 993[Submit][Status ...
- 强连通分量的Tarjan算法
资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tar ...
- code vs1506传话(塔尖)+tarjan图文详解
1506 传话 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题解 题目描述 Description 一个朋友网络,如果a认识b,那么如果a第一次收到 ...
- [知识点]Tarjan算法
// 此博文为迁移而来,写于2015年4月14日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vxnx.html UPD ...
- 【Tarjan】+【SPFA】APIO2009 Atm
一.算法介绍 tarjan——求解有向图强连通分量.这个算法在本人的一篇blog中有介绍,这里就不赘述了.贴上介绍tarjan的的blog链接:http://www.cnblogs.com/Maki- ...
随机推荐
- 【堆栈应用一】一个数divided=几个最小质因数的乘积
/******************************************堆栈:一个数divided几个质因数(质因数的乘积为N)***************************** ...
- GridView72变 控件
快速预览:GridView 无代码分页排序GridView选中,编辑,取消,删除GridView正反双向排序GridView和下拉菜单 DropDownList结合GridView和CheckBox结 ...
- [转载]Windows 7笔记本创建wifi热点供手机上网教程
用智能手机的朋友会发现这样一个问题,智能手机比普通手机上网更耗流量.这是因为智能手机应用(软件)丰富,而且大部分应用都会自动联网.为此,许多人每月包了上百M的流量套餐,但用的时候还是小心翼翼,生怕流量 ...
- Spring MVC Controller中解析GET方式的中文参数会乱码的问题(tomcat如何解码)
Spring MVC Controller中解析GET方式的中文参数会乱码的问题 问题描述 在工作上使用突然出现从get获取中文参数乱码(新装机器,tomcat重新下载和配置),查了半天终于找到解决办 ...
- JS正则表达式基础
正则表达式的作用: 测试字符串的某个模式 替换文本 根据模式匹配从字符串中提取一个子字符串.可以用来在文本或输入字段中查找特定文字 [^\d]/g这是一个正则表达式,在JS中 ...
- jquery之ajax之$.get方法的使用
jquery对ajax进行了封装,非常方便. 自己用$.get()方法写了个小demo,包括客户端和服务端. 客户端: <!DOCTYPE html> <html> <h ...
- BestCoder——59
http://bestcoder.hdu.edu.cn/contests/contest_show.php?cid=640 第一题:给一堆书的序列 每次操作只能将书从中间移到最上面 求最少移动多少次 ...
- 国内HTML5前端开发框架汇总
国内HTML5前端开发框架汇总 Dawei Cheng 程大伟... 于 星期日, 02/12/2012 - 20:53 提交 国外很有多优秀的HTML5前端开发框架相信大家都耳熟能详:JQuery ...
- CodeForces 441E(Codeforces Round #252 (Div. 2))
思路:dp[i][now][mark][len] i 表示当前第i 次now存的是后8位,mark为第9位为0还是1 len第九位往高位还有几位和第9位相等. 只存后8位的原因:操作只有200次 ...
- 神奇的Noip模拟试题 T3 科技节 位运算
3 科技节 (scifest.pas/.c/.cpp) [问题描述] 一年一度的科技节即将到来.同学们报名各项活动的名单交到了方克顺校长那,结果校长一看皱了眉头:这帮学生热情竟然如此高涨,每个人都报那 ...