矩阵卷积Matlab(转载)
转载自:http://blog.csdn.net/anan1205/article/details/12313593
两个矩阵卷积转化为矩阵相乘形式——Matlab应用(这里考虑二维矩阵,在图像中对应)两个图像模糊(边缘)操作,假设矩阵A、B,A代表源图像,B代表卷积模板,那么B的取值决定最后运算的结果。
Matlab中的应用函数——conv2(二维卷积,一维对应conv)
函数给出的公式定义为:
同一维数据卷积一样,它的实质在于将卷积模板图像翻转(旋转180),这里等同于一维信号的翻转,然后将卷积模板依次从上到下、从左到右滑动,计算在模板与原始图像交集元素的乘积和,该和就作为卷积以后的数值。
为了验证后续矩阵卷积转化为矩阵相乘,这里给出的conv2的实例描述:
假设矩阵A(4*3)、B(2*3)如下:
首先,B需要旋转180,
命令旋转2次90即可:
B = rot90(rot90(B));或者B = rot90(h,2); 结果为:
其次:命令conv2函数:
C = conv2(A,B,‘shape’),该函数的具体操作图示:
依次计算直至结束,结果数据为:
shape的取值有三种,full代表返回卷积以后的全部数据,size为(mA+mB-1,nA+nB-1)的数据;same代表返回卷积以后的原图size (mA,nA)的部分数据;valid返回size为(mA-mB+1,nA-nB+1)的数据,指的是模板元素全部参加运算的结果数据,即源图像和模板的交集为模板。
矩阵卷积转化为矩阵相乘,网上也有很多方法,通俗化表示为:
A×B = B1*A1;
需要针对原始数据与模板数据做变换,变换过程如下:
首先进行周期延拓,补零:
M = mA+mB-1 = 5; N = nA+nB-1 = 5,对应卷积以后full数据大小。
那么初次换换的A和B为:
其次对A1和B1分别进行变换
转化B1——针对B1以及转换矩阵方法为:
将B1中的每一行向量依次按照B转化为一个方形矩阵Ba~Be,然后针对于每一个方形矩阵按照B矩阵组合成一个新的矩阵B1。B1矩阵的大小为((mA+mB-1)*(nA+nB-1),(mA+mB-1)*(nA+nB-1))。
转化A1——堆叠向量式
将上个步骤转换的A1按照行向量顺寻依次转化为一个列向量,那么列向量的大小为((mA+mB-1)*(nA+nB-1),1)大小。
针对实例:具体代码为:
周期延拓:
转化A——>A1
- [m1,n1] = size(A); [m2,n2] = size(B);
- m=m1+m2-1;n=n1+n2-1;
- AA = padarray(A,[m2-1,n2-1],'post');%%%补零
- BB = padarray(B,[m1-1,n1-1],'post');%%%补零
- AA =AA';
- A1 = AA(:);%%%%
转化B——>B1
- B2(1,:) = BB(1,:);
- for i =2:m
- B2(i,:) = BB(m-i+2,:);
- end %%%矩阵a ~ e的重新赋值
- B4 = zeros(n,n);%%%%%%%每一行转化的方阵
- B1 = zeros(m*n,m*n);%%%%%最后的矩阵
- for i =1:m%%%%%%%%几维向量
- B = B2(i,:);
- if sum(sum(abs(B))==0)
- B4 = zeros(n,n);
- else
- for j = 1:n%%%%%%%元素
- for k =0:n-1%%%%%%%%位置(搞定一行向量转化为方阵的形式)
- t = mod(j+k,n);
- if t==0
- t = n;
- end %%%end if
- B4(t,k+1) = B(j);
- end %%%end for
- end %%%end for
- for k =0:m-1%%%%%%%%每一个转换矩阵在大矩阵中的位置编号(搞定小方阵在大阵中的位置转化为大方阵的形式)
- t = mod(i+k,m);
- if t==0
- t = m;
- end %%%end if
- B1(k*n+1:(k+1)*n,(t-1)*n+1:t*n) = B4;
- end %%%end for
- end %%%end if else
- end %%%end for
结果数据转化:
- Result = B1*A1;
- Result = reshape(Result,n,m);
- Result = Result';
得到的结果等同于conv2的数据结果:
- dd_data = [1,2,4,5,6;6,8,9,1,3;6,8,9,2,4;7,3,5,7,5;1,5,8,9,3]; % 5 * 5
- f_k = [3,4,5;6,7,8;3,2,1]; % 3 * 3
- dd_data_f_k = conv2(dd_data,f_k,'full'); % matlab 函数接口
- dd_data1 = padarray(dd_data,[2 2],'both'); % 扩充原始数据
- v_dd_data = im2col(dd_data1,[3 3]);% 块数据向量化
- f_k1 = f_k(:);
- f_k1 = f_k1(end : -1 :1);
- f_k1 = f_k1'; % 卷积核的表示
- dd_data_f_k1 = f_k1 * v_dd_data; % 卷积转化为相乘
- dd_data_f_k1 = reshape(dd_data_f_k1,[7 7]); % 转化为结果数据
矩阵卷积Matlab(转载)的更多相关文章
- Matlab 矩阵卷积理解(转载)
转载自:http://blog.csdn.net/andrewseu/article/details/51783181 在图像处理的过程中,经常会看到矩阵卷积的概念,比如说用一个模板去和一张图片进行卷 ...
- 关于matlab矩阵卷积conv2和傅里叶变换求卷积ifft2的关系
先定义两个矩阵 a = [1 2 3 5 ; 4 7 9 5;1 4 6 7;5 4 3 7;8 7 5 1] %a矩阵取5*4 b = [1 5 4; 3 6 8; 1 5 7] %b矩阵如多数 ...
- 浅谈压缩感知(十四):傅里叶矩阵与小波变换矩阵的MATLAB实现
主要内容: 傅里叶矩阵及其MATLAB实现 小波变换矩阵及其MATLAB实现 傅里叶矩阵及其MATLAB实现 傅里叶矩阵的定义:(来源: http://mathworld.wolfram.com/F ...
- 图像处理中任意核卷积(matlab中conv2函数)的快速实现。
卷积其实是图像处理中最基本的操作,我们常见的一些算法比如:均值模糊.高斯模糊.锐化.Sobel.拉普拉斯.prewitt边缘检测等等一些和领域相关的算法,都可以通过卷积算法实现.只不过由于这些算法的卷 ...
- 浅谈压缩感知(七):常见测量矩阵的MATLAB实现
1.随机高斯测量矩阵 function [ Phi ] = GaussMtx( M,N ) %GaussMtx Summary of this function goes here % Generat ...
- 混淆矩阵在Matlab中PRtools模式识别工具箱的应用
声明:本文用到的代码均来自于PRTools(http://www.prtools.org)模式识别工具箱,并以matlab软件进行实验. 混淆矩阵是模式识别中的常用工具,在PRTools工具箱中有直接 ...
- Matlab矩阵填充--Matlab interp2
Matlab interp2 为Matlab的矩阵填充函数, 填充关系: x=1:11; y=1:13; x1=1:0.1:12; y1=1:0.1:14; [x2,y2]=meshgrid(x1,y ...
- 3D数学 ---- 矩阵和线性变换[转载]
http://blog.sina.com.cn/s/blog_536e0eaa0100jn7c.html 一般来说,方阵能描述任意线性变换.线性变换保留了直线和平行线,但原点没有移动.线性变换保留直线 ...
- 纠结和郁闷的存在感-关于DirectX与HLSL的矩阵存储方式---转载好文章
我常常这么大胆的认为,搞科学的人总是喜欢用各种让常人难以理解的复杂方式去处理某些其实可能很简单的事情,这种情况在他自身擅长的.有着诸多对手竞争的领域上极为常见.比如吧,搞DirectX的人用了左手坐标 ...
随机推荐
- 在虚拟机上安装Ubutu完成后卡在VM Tool的安装上
今天在虚拟机上装Ubuntu之后,卡在了VM Tool的安装页,点击回车后可以进入命令行模式.并出现如下提示“Vmware Easy Install PLEASE WAIT! VMware Tools ...
- Elasticsearch Java Api--DeleteByQuery
一.安装插件 要删除某个索引的一个type下的所有文档,相当于关系型数据库中的清空表操作.查阅了一些资料可以通过Delete-by-Query插件删除,首先使用插件管理器安装Delete-by-Que ...
- visualsvn server 安装提示无法启动
需要在服务里面给visualsvn server 用本地账户登陆权限
- (DFS)hdoj1312-Red and Black
题目链接 非常简单的DFS,初学DFS做这道题很合适.需要注意的是题目中输入的行和列顺序是颠倒的. #include<cstdio> #include<cstring> usi ...
- EF Code-First数据迁移的尝试
Code-First的方式虽然省去了大量的sql代码,但增加了迁移的操作.尝试如下: 1.首先要在“扩展管理器”里搜索并安装NuGet“库程序包管理器”,否则所有命令都不能识别,会报CommandNo ...
- [转]C++运算优先级列表
From:http://en.cppreference.com/w/cpp/language/operator_precedence Precedence Operator Description A ...
- [Windows驱动]驱动包(Driver Packages)
在windows下安装一个驱动,我们你需要把所有需要的软件打包-称为驱动包.驱动包里包括系统提供的给所有设备类使用的一般安装工具,还包括了设备商提供的设备特定的组件.下面我们就来看看驱动包里具体需要哪 ...
- ACM - 概率、期望题目 小结(临时)
概率DP求期望大多数都是全期望公式的运用.主要思考状态空间的划分以及状态事件发生的概率.问题可以分为无环和有环两类.无环一类多数比较简单,可以通过迭代或者记忆化搜索完成.有环一类略复杂,可以通过假设方 ...
- Mysql 基本操作连接数据库读取信息内容
<?php header("content-type:text/html; charset=utf-8"); // 数据库配置信息 define("DB_HOST& ...
- hdu 2036
Ps: - -感觉这道题完全就是数学题...就是求知道每个顶点的坐标,然后求这个多边形的面积... 代码:#include "stdio.h"#include "std ...