格点拉格朗日插值与PME算法
技术背景
在前面的一篇博客中,我们介绍了拉格朗日插值法的基本由来和表示形式。这里我们要介绍一种拉格朗日插值法的应用场景:格点拉格朗日插值法。这种场景的优势在于,如果我们要对整个实数空间进行求和或者积分,计算量是随着变量的形状增长的。例如分子动力学模拟中计算静电势能,光是计算电荷分布函数都是一个\(O(N^2)\)的计算量,其中\(N\)表示点电荷数量。而如果我们对空间进行离散化,划分成一系列的格点,再对邻近的常数个格点进行插值,那么我们的求和计算量可以缩减到\(O(N)\)。
格点拉格朗日插值
给定一个函数\(y=f(x-x_r)\),我们可以将其插值到最近的4个整数格点上:\(\lfloor x_r\rfloor-1.5,\lfloor x_r\rfloor-0.5,\lfloor x_r\rfloor+0.5,\lfloor x_r\rfloor+1.5\),根据拉格朗日插值形式有:
\]
如果以\(\lfloor x_r\rfloor\)最近的中心点为原点,即\(\lfloor x_r\rfloor=0\),则其系数有:
c_1(x)&=\frac{(x-\lfloor x_r\rfloor+0.5)(x-\lfloor x_r\rfloor-0.5)(x-\lfloor x_r\rfloor-1.5)}{-6}=\frac{1}{48}(-8x^3+12x^2+2x-3)\\
c_2(x)&=\frac{(x-\lfloor x_r\rfloor+1.5)(x-\lfloor x_r\rfloor-0.5)(x-\lfloor x_r\rfloor-1.5)}{2}=\frac{1}{16}(8x^3-4x^2-18x+9)\\
c_3(x)&=\frac{(x-\lfloor x_r\rfloor+1.5)(x-\lfloor x_r\rfloor+0.5)(x-\lfloor x_r\rfloor-1.5)}{-2}=\frac{1}{16}(-8x^3-4x^2+18x+9)\\
c_4(x)&=\frac{(x-\lfloor x_r\rfloor+1.5)(x-\lfloor x_r\rfloor+0.5)(x-\lfloor x_r\rfloor-0.5)}{6}=\frac{1}{48}(8x^3+12x^2-2x-3)
\end{align*}
\]
其图像大致如下图所示(图片来自于参考链接1):
对于多维的格点拉格朗日插值,则是一个叉乘的关系,其图像为:
PME算法
我们把上面得到的这个格点拉格朗日插值应用到静电势能的计算中。在前面一篇博客介绍的静电势计算中,有一项电荷分布函数是这样的:
\]
其中\(S(\mathbf{k})=\sum_{i=0}^{N-1}q_ie^{j\mathbf{k}\mathbf{r}_i}=\sum_{i=0}^{N-1}q_ie^{j\mathbf{k}_xx_i}e^{j\mathbf{k}_yy_i}e^{j\mathbf{k}_zz_i}\)。把后面这几个指数项用格点拉格朗日插值替代得:
\]
有了函数形式以后,我们可以简写\(S(\mathbf{k})\)为一个关于三维空间格点的求和:
\]
再把系数项单独拿出来:
\]
这里的\(Q\)其实是一个shape为\((N_x,N_y,N_z)\)的张量,而\(m_x,m_y,m_z\)对应的是某一个格点的张量索引,每一个索引对应的张量元素都是通过系数函数计算出来的,有了这样的一个概念之后,再重写\(S(\mathbf{k})\)的函数:
\]
我们会发现,这个插值出来的\(S(\mathbf{k})\)函数其实是在计算张量\(Q\)在\(\mathbf{k}\)处的傅里叶变换,那么就可以进一步简写\(S(\mathbf{k})\)的形式:
\]
其中\(F^{*}\)表示逆傅里叶变换,\(V\)表示逆傅里叶变换归一化常数。按照前面的4-格点拉格朗日插值法,此时得到的\(S(\mathbf{k})\)的值是一个shape为(4,4,4)的张量,这个张量的含义是64个格点分别对于倒格矢\(\mathbf{k}\)的贡献(插值出来的单个点电荷的作用效果)。那么类似的可以得到:
\]
代入到Ewald形式的长程相互作用项(可以参考这篇文章)中可以得到:
E^L&=\frac{1}{2k_xk_yk_z\epsilon_0}\sum_{|\mathbf{k}|>0}\frac{e^{-\frac{\sigma^2 k^2}{2}}}{k^2}s(\mathbf{k})\\
&=\frac{V}{2k_xk_yk_z\epsilon_0}\sum_{|\mathbf{k}|>0}\frac{e^{-\frac{\sigma^2 k^2}{2}}}{k^2}|F_{\mathbf{k}}(Q)(m_x,m_y,m_z)|^2
\end{align*}
\]
这就是Particle-Mesh-Ewald方法计算中计算长程相互作用势能的技巧。既然\(\mathbf{k}\)空间无法快速收敛,那就减少电荷分布项的计算复杂度,同样也可以起到大量节约计算量的效果。
短程相互作用项的截断
在前面Ewald求和的文章中我们介绍过,把静电势能的计算分成长程、短程和自我相互作用项之后,分别有不同的收敛形式。长程相互作用项已经通过上述章节完成了计算量的简化,另外还有一个短程相互作用项\(E^{S}\),我们知道短程相互作用项关于原子实空间的间距是快速收敛的,并且在计算LJ势能的时候我们已经计算过一次给定cutoff截断的近邻表。那么,我们很容易考虑到引入近邻表的概念,直接利用这个近邻表对静电势能的短程相互作用项做一个截断。于是短程相互作用项可以写为:
E^S&=\sum_{\mathbf{n}}\sum_{i=0}^{N-2}\sum_{j=i+1}^{N-1}\frac{q_iq_j}{4\pi\epsilon_0|\mathbf{r}_j-\mathbf{r}_i+\mathbf{n}\mathbf{L}|}Erfc\left(\frac{|\mathbf{r}_j-\mathbf{r}_i+\mathbf{n}\mathbf{L}|}{\sqrt{2}\sigma}\right)+\sum_{|\mathbf{n}|>0}\frac{q_i^2}{4\pi\epsilon_0|\mathbf{n}\mathbf{L}|}Erfc\left(\frac{|\mathbf{n}\mathbf{L}|}{\sqrt{2}\sigma}\right)\\
&\approx \sum_{i,j\in \{Neigh\}}\frac{q_iq_j}{4\pi\epsilon_0|\mathbf{r}_j-\mathbf{r}_i|}Erfc\left(\frac{|\mathbf{r}_j-\mathbf{r}_i|}{\sqrt{2}\sigma}\right)
\end{align*}
\]
这里有个前提假设是\(d_{cutoff}<<L_{pbc}\),所以略去了周期性盒子中其他盒子内的\(i\)电荷对中心盒子的\(\mathbf{r}_i\)处的作用项。
Particle-Mesh-Ewald
根据上面章节中得到的近似的远程相互作用项和短程相互作用项之后,我们可以重写PME(Particle-Mesh-Ewald)算法中的总静电势能为:
E&=E^S+E^L-E^{self}\\
&=\sum_{i,j\in \{Neigh\}}\frac{q_iq_j}{4\pi\epsilon_0|\mathbf{r}_j-\mathbf{r}_i|}Erfc\left(\frac{|\mathbf{r}_j-\mathbf{r}_i|}{\sqrt{2}\sigma}\right)\\
&+\frac{V}{2k_xk_yk_z\epsilon_0}\sum_{|\mathbf{k}|>0}\frac{e^{-\frac{\sigma^2 k^2}{2}}}{k^2}|F_{\mathbf{k}}(Q)(m_x,m_y,m_z)|^2\\
&-\frac{1}{4\pi\epsilon_0}\frac{1}{\sqrt{2\pi}\sigma}\sum_{i=0}^{N-1}q_i^2
\end{align*}
\]
总结概要
本文介绍了使用基于格点拉格朗日插值法的Particle Mesh Ewald算法,降低分子力场中的静电势能项计算复杂度的基本原理。静电势能的计算在Ewald求和框架下被拆分成了远程相互作用项和短程相互作用项,其中短程相互作用项关于实空间的点电荷间距快速收敛,而远程相互作用项在倒易空间慢速收敛。因此在远程相互作用的计算中,可以使用插值法降低单个倒易格点的计算复杂度,从而使得整体的远程相互作用项计算也能够快速收敛。
版权声明
本文首发链接为:https://www.cnblogs.com/dechinphy/p/pme.html
作者ID:DechinPhy
更多原著文章:https://www.cnblogs.com/dechinphy/
请博主喝咖啡:https://www.cnblogs.com/dechinphy/gallery/image/379634.html
参考链接
格点拉格朗日插值与PME算法的更多相关文章
- fold算法(拉格朗日插值)
如果打表发现某个数列: 差分有限次之后全为0 例如: 2017新疆乌鲁木齐ICPC现场赛D题 ,,,,,,,,,,…… [2018江苏南京ICPC现场赛也有这样的题目] 那么可以使用以下黑科技计算出第 ...
- 常系数齐次线性递推 & 拉格朗日插值
常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] ...
- LG4781 【模板】拉格朗日插值
题意 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$取模 输入输出格 ...
- 多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]
全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌 ...
- 【BZOJ】3453: tyvj 1858 XLkxc 拉格朗日插值(自然数幂和)
[题意]给定k<=123,a,n,d<=10^9,求: $$f(n)=\sum_{i=0}^{n}\sum_{j=1}^{a+id}\sum_{x=1}^{j}x^k$$ [算法]拉格朗日 ...
- 【BZOJ】2655: calc 动态规划+拉格朗日插值
[题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...
- 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值
[题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...
- Codeforces D. The Sum of the k-th Powers(拉格朗日插值)
题目描述: The Sum of the k-th Powers time limit per test 2 seconds memory limit per test 256 megabytes i ...
- LG4781 【模板】拉格朗日插值 和 JLOI2016 成绩比较
[模板]拉格朗日插值 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$ ...
- [BZOJ3453]tyvj 1858 XLkxc:拉格朗日插值
分析 之前一直不知道拉格朗日插值是干什么用的,只会做模板题,做了这道题才明白这个神奇算法的用法. 由题意可知,\(f(x)\)是关于\(x\)的\(k+1\)次函数,\(g(x)\)是关于\(x\)的 ...
随机推荐
- 【转载】 校正Ubuntu时间为北京时间
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_37421762/article/de ...
- mpi4py 官方使用手册
一直好奇mpi4py的使用手册在哪,找了好久最后在anaconda上发现了线索: https://anaconda.org/conda-forge/mpi4py Home: https://mpi4p ...
- batch_norm在强化学习中建议使用的形式
def batch_norm(layer, **kwargs): """ Apply batch normalization to an existing layer. ...
- 解密prompt系列35. 标准化Prompt进行时! DSPy论文串烧和代码示例
一晃24年已经过了一半,我们来重新看下大模型应用中最脆弱的一环Prompt Engineering有了哪些新的解决方案.这一章我们先看看大火的DSPy框架,会先梳理DSPy相关的几篇核心论文了解下框架 ...
- 免费领取云主机,在华为开发者空间玩转YOLOV3
摘要:YOLOv3(You Only Look Once version 3)是一种高效的目标检测算法,旨在实现快速而准确的对象检测. 本文分享自华为云社区<华为云开发者云主机体验[玩转华为云] ...
- kubernetes中集成istio出现拉取配置中心数据失败导致服务启动失败
荐
由于在k8s使用了grpc,所以这里我们集成istio来实现http2的自动发现以及负载均衡,但是随着节点增加,istio之前同步配置时间边长导致第一次启动时,服务启动拉取配置时istio却还没初始化 ...
- 2024九省联考 数学 T19
寒假有朋友打电话吐槽九省联考,看了眼数学卷子感觉非常刺激.刚开学没事干,试着做一下 \(19\). (\(17\) 分) 离散对数在密码学中有重要的应用.设 \(p\) 是素数,集合 \(X=\{1, ...
- 新员工一口气写完了这些C语言例子,领导给他转正了!
持续更新中... 很多想从事嵌入式Linux开发的老铁问一口君,有没有快速提升自己编程水平的小例子? 一口君根据自己多年工作经验,整理了一些基于Linux的c语言的非常实用的小例子, 这些例子在嵌入式 ...
- 瑞芯微 | I2S-音频基础 -1
最近调试音频驱动,顺便整理学习了一下i2s.alsa相关知识,整理成了几篇文章,后续会陆续更新. 喜欢嵌入式.Li怒晓得老铁可以关注一口君账号. 1. 音频常用术语 名称 含义 ADC(Analog ...
- .NET 9发布的最后一个预览版Preview 7, 下个月发布RC
微软在2024年8月9日 发布了.NET 9 Preview 7[1],这是它在2024 年 11 月 12 日 RTM 之前进入发布候选阶段之前的最后预览版, 将在.NET Conf 2024 一起 ...