51Nod 约数之和
输入一个数N(2 <= N <= 10^9)。
输出S(N) Mod 1000000007(10^9 + 7)的结果。
1000
576513341 我们知道的是,当d(x)表示x的约数的时候,d(i*j)=Σ(p|i)Σ(q|j) [gcd(p,q)==1]
但是当d(x)表示x的约数之和的时候,d(i*j)=Σ(p|i)Σ(q|j) p*q [gcd(p,j/q)==1]
这两者都可以通过质因子分解来证明。
然后式子就好推了,我这里就不推了23333
#include<bits/stdc++.h>
#define ll long long
#define ha 1000000000
using namespace std;
const int maxn=10000000;
ll zs[maxn/5],miu[maxn+5];
ll t=0,low[maxn+5];
bool v[maxn+5];
ll d[maxn+5];
map<ll,ll> mmpd;
map<ll,ll> mmpmiu;
ll n; inline ll add(ll x,ll y){
x+=y;
return x>=ha?x-ha:x;
} inline ll c(ll x){
if(x>ha) x%=ha;
return (x*(x+1)>>1)%ha;
} inline void init(){
d[1]=1,low[1]=1,miu[1]=1;
for(int i=2;i<=maxn;i++){
if(!v[i]) zs[++t]=i,miu[i]=-1,d[i]=i+1,low[i]=i;
for(int j=1,u;j<=t&&(u=zs[j]*i)<=maxn;j++){
v[u]=1;
if(!(i%zs[j])){
low[u]=low[i]*zs[j];
if(low[i]==i) d[u]=d[i]*zs[j]+1ll;
else d[u]=d[low[u]]*d[i/low[i]];
break;
}
low[u]=zs[j];
miu[u]=-miu[i];
d[u]=d[i]*(zs[j]+1);
}
} for(int i=1;i<=maxn;i++){
d[i]=add(d[i-1],d[i]);
miu[i]=add(add(miu[i]*i,ha),miu[i-1]);
}
} inline ll getmiu(ll x){
if(x<=maxn) return miu[x];
if(mmpmiu.count(x)) return mmpmiu[x]; ll an=ha-1;
for(ll i=2,j,now;i<=x;i=j+1){
now=x/i,j=x/now;
an=add(an,add(c(j),ha-c(i-1))*(ll)getmiu(now)%ha);
}
an=ha-an;
mmpmiu[x]=an;
return an;
} inline ll getd(ll x){
if(x<=maxn) return d[x];
if(mmpd.count(x)) return mmpd[x]; ll an=0;
for(ll i=1,j,now;i<=x;i=j+1){
now=x/i,j=x/now;
an=add(an,add(c(j),ha-c(i-1))*(now%ha)%ha);
} mmpd[x]=an;
return an;
} inline void solve(){
ll pre=0,an=0,oops,val;
for(ll i=1,j,now;i<=n;i=j+1){
now=n/i,j=n/now,oops=getmiu(j);
val=getd(now),val=val*(ll)val%ha;
an=add(an,add(oops,ha-pre)*(ll)val%ha);
pre=oops;
} printf("%lld\n",an);
} int main(){
init();
scanf("%lld",&n);
solve(); return 0;
}
51Nod 约数之和的更多相关文章
- 51NOD 1220 约数之和 [杜教筛]
1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mi ...
- [51Nod 1220] - 约数之和 (杜教筛)
题面 令d(n)d(n)d(n)表示nnn的约数之和求 ∑i=1n∑j=1nd(ij)\large\sum_{i=1}^n\sum_{j=1}^nd(ij)i=1∑nj=1∑nd(ij) 题目分析 ...
- 【动态规划】mr359-最大公约数之和
[题目大意] 选取和不超过S的若干个不同的正整数,使得所有数的约数(不含它本身)之和最大. 输入一个正整数S. 输出最大的约数之和. 样例输入 Sample Input 11 样例输出 Sample ...
- 约数之和(POJ1845 Sumdiv)
最近应老延的要求再刷<算法进阶指南>(不得不说这本书不错)...这道题花费了较长时间~(当然也因为我太弱了)所以就写个比较易懂的题解啦~ 原题链接:POJ1845 翻译版题目(其实是AcW ...
- POJ1845Sumdiv题解--约数之和
题目链接 https://cn.vjudge.net/problem/POJ-1845 分析 \(POJ\)里的数学题总是这么妙啊 首先有一个结论就是\(A=\prod{ \ {p_i}^{c_i} ...
- 51nod 1220 约数之和【莫比乌斯反演+杜教筛】
首先由这样一个式子:\( d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]\frac{pj}{q} \)大概感性证明一下吧我不会证 然后开始推: \[ \sum_{i=1 ...
- 【51nod1220】约数之和
题目 d(k)表示k的所有约数的和.d(6) = 1 + 2 + 3 + 6 = 12. 定义S(N) = ∑1<=i<=N ∑1<=j<=N d(i*j). 例如:S(3) ...
- 51nod 约数和(数论)
题目链接: 约数和 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 有三个下标从1到n的数组a.b.c. a数组初始全为0. b[i]=∑j|ia[j] c[i]=∑j|ib[j] ...
- 51nod1220 约数之和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1220 $G(n)=\sum\limits_{i=1}^n\sum\lim ...
随机推荐
- python中字符串的一些用法
一.字符串的拼接: a=‘123’ b=‘abc’ d=‘hello world’ 1.print(a+b) 2.print(a,b) 3. c=‘ ’.join((a ...
- and和or运算
and和or的运算,从前向后按顺序计算,当True结果遇到or就停止,返回True:当False结果遇到and就停止,返回False:False遇到or,继续走:True遇到and,继续走. > ...
- LeetCode(287)Find the Duplicate Number
题目 Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), ...
- launchMode
launchMode在多个Activity跳转的过程中扮演着重要的角色,它可以决定是否生成新的Activity实例,是否重用已存在的Activity实例,是否和其他Activity实例公用一个task ...
- Linux的档案权限与目录配置
重点回顾:1.Linux的每个档案中,依据权限分为使用者.群组与其他人三种身份 2.群组最有用的功能之一,就是当你在团队开发资源的时候,且每个账号都可以有多个群组的支持 3.利用"ls -l ...
- loj2275 「JXOI2017」颜色
枚举右端点,然后看左端点合法情况. 先预处理每个颜色 \(i\) 的最大出现位置 \(max_i\) 和最小出现位置 \(min_i\).对于枚举右端点在一个位置 \(i\),凡是 \(max_k & ...
- Spring-Boot自定义Starter实践
此文已由作者王慎为授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. disconf-spring-boot-starter 使用方法: 引入maven依赖: <depen ...
- [POJ 1000] A+B Problem 经典水题 C++解题报告 JAVA解题报告
A+B Problem Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 311263 Accepted: 1713 ...
- Selenium WebDriver-操作复选框
#encoding=utf-8 import unittest import time import chardet from selenium import webdriver class Visi ...
- 使用jackson解析JSON数据
本文介绍使用jackson来对json数据进行解析操作 首先,需要去官网下载jackson,本文使用的是(jackson-all-1.9.11.jar) 主要通过ObjectMapper对json进行 ...