发现转移矩阵是一个循环矩阵。

然后循环矩阵乘以循环矩阵还是循环矩阵。

据说还有FFT并且更优的做法。

之后再看吧

#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define mp make_pair
#define md 20170408
#define maxn 20000005 int pri[maxn],top,p,n,m;
bool vis[maxn];
int cnt[2][101];//0 质数 1 非质数 void init()
{
memset(vis,false,sizeof vis);
cnt[0][1]++;cnt[1][1]++;
F(i,2,m)
{
if (!vis[i]) pri[++top]=i,cnt[0][i%p]++;
else cnt[0][i%p]++,cnt[1][i%p]++;
for (int j=1;j<=top&&(ll)i*pri[j]<=m;++j)
{
vis[i*pri[j]]=true;
if (i%pri[j]==0) break;
}
}
} struct Matrix{
int x[101][101];
void init(){memset(x,0,sizeof x);}
void build1()
{
init();
F(i,0,p-1) F(j,0,p-1)
(x[i][(i+j)%p]+=cnt[1][j])%=md;
}
void builde()
{
init();
F(i,0,p-1) x[i][i]=1;
}
void build0()
{
init();
F(i,0,p-1) F(j,0,p-1)
(x[i][(i+j)%p]+=cnt[0][j])%=md;
}
Matrix operator * (Matrix a) {
Matrix ret;
ret.init();
F(i,0,p-1) F(j,0,p-1) F(k,0,p-1)
(ret.x[i][j]+=x[i][k]*a.x[k][j])%=md;
return ret;
}
Matrix operator ^ (Matrix a){
Matrix ret;
ret.init();
F(j,0,p-1) F(k,0,p-1)
ret.x[0][j]=((ll)ret.x[0][j]+(ll)x[0][k]*a.x[k][j])%md;
F(i,1,p-1)
{
ret.x[i][0]=ret.x[i-1][p-1];
F(j,1,p-1) ret.x[i][j]=ret.x[i-1][j-1];
}
return ret;
}
void print()
{
printf("|----------|\n");
F(i,0,p-1)
{
F(j,0,p-1)
printf("%d ",x[i][j]);
printf("\n");
}
printf("|----------|\n");
}
}A,B,S,C,D; int main()
{
scanf("%d%d%d",&n,&m,&p); init();
S.init();S.x[0][0]=1;
int b=n,ans=0;
A.build0(); C.builde();
while (b)
{
if (b&1) C=C^A;
A=A^A;
b>>=1;
}
ans+=C.x[0][0];
A.build1(); C.builde(); b=n;
while (b)
{
if (b&1) C=C^A;
A=A^A;
b>>=1;
}
ans-=C.x[0][0];
printf("%d\n",(ans%md+md)%md);
}

  

BZOJ 4818 [Sdoi2017]序列计数 ——矩阵乘法的更多相关文章

  1. bzoj 4818: [Sdoi2017]序列计数【容斥原理+dp+矩阵乘法】

    被空间卡的好惨啊---- 参考:http://blog.csdn.net/coldef/article/details/70305596 容斥,\( ans=ans_{没有限制}-ans{没有质数} ...

  2. 【bzoj4818】[Sdoi2017]序列计数 矩阵乘法

    原文地址:http://www.cnblogs.com/GXZlegend/p/6825132.html 题目描述 Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的 ...

  3. BZOJ.4818.[SDOI2017]序列计数(DP 快速幂)

    BZOJ 洛谷 竟然水过了一道SDOI!(虽然就是很水...) 首先暴力DP,\(f[i][j][0/1]\)表示当前是第\(i\)个数,所有数的和模\(P\)为\(j\),有没有出现过质数的方案数. ...

  4. BZOJ 4818 SDOI2017 序列计数

    刚出炉的省选题,还是山东的. 自古山东出数学和网络流,堪称思维的殿堂,比某地数据结构成风好多了. 废话不说上题解. 1.题面 求:n个数(顺序可更改),值域为[1,m],和为p的倍数,且这些数里面有质 ...

  5. luogu 3702 [SDOI2017]序列计数 矩阵乘法+容斥

    现在看来这道题真的不难啊~ 正着求不好求,那就反着求:答案=总-全不是质数 这里有一个细节要特判:1不是质数,所以在算全不是质数的时候要特判1 code: #include <bits/stdc ...

  6. 【BZOJ 4818】 4818: [Sdoi2017]序列计数 (矩阵乘法、容斥计数)

    4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 359 Description Al ...

  7. [BZOJ 4818/LuoguP3702][SDOI2017] 序列计数 (矩阵加速DP)

    题面: 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4818 Solution 看到这道题,我们不妨先考虑一下20分怎么搞 想到暴力,本蒟 ...

  8. [Sdoi2017]序列计数 [矩阵快速幂]

    [Sdoi2017]序列计数 题意:长为\(n \le 10^9\)由不超过\(m \le 2 \cdot 10^7\)的正整数构成的和为\(t\le 100\)的倍数且至少有一个质数的序列个数 总- ...

  9. 【BZOJ4818】【SDOI2017】序列计数 [矩阵乘法][DP]

    序列计数 Time Limit: 30 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Alice想要得到一个长度为n的序 ...

随机推荐

  1. Unity3D中使用Projector生成阴影

    在Unity3D中使用Projector实现动态阴影 无意中看见一篇博客叙述使用Projector实现动态阴影可以在移动平台拥有非常好的性能,遂按照其想法实现了一遍,发现其中竟有许多细节,写下这篇博客 ...

  2. SC || Chapter 3

    ┉┉∞ ∞┉┉┉┉∞ ∞┉┉┉∞ ∞┉┉ 基本数据类型 && 对象数据类型 基本数据类型(int char long) 在栈中分配内存,不可变 对象数据类型(String BigInt ...

  3. 7.Props向子组件传递数据

    组件实例的作用域是孤立的.这意味着不能并且不应该在子组件的模板内直接引用父组件的数据. 可以使用 props 把数据传给子组件. for-child-msg="aaa"  , fo ...

  4. Bootstrap历练实例:语境色彩的面板

    带语境色彩的面板 使用语境状态类 panel-primary.panel-success.panel-info.panel-warning.panel-danger,来设置带语境色彩的面板,实例如下: ...

  5. Java Object类 instanceof关键字 练习:判断是否为同一人 集合按照人的年龄排序,如果年龄相同按名字的字母顺序升序 Comparator比较器

    package com.swift; public class Same_Person_Test { public static void main(String[] args) { /* * Obj ...

  6. STL之stack操作

    c++ stl栈stack介绍 C++ Stack(堆栈) 是一个容器类的改编,为程序员提供了堆栈的全部功能,——也就是说实现了一个先进后出(FILO)的数据结构. c++ stl栈stack的头文件 ...

  7. linux系统防火墙关闭

    临时关闭防火墙 #systemctl  stop  firewalld 永久关闭服务端防火墙 #systemctl  disabled   firewalld getenforce   查询状态 临时 ...

  8. VMware安装Ubuntu配置NAT模式下静态IP,解决访问外网问题

    安装好VMware后,打开网络连接可以看到有VMware Network Adapter VMnet1和VMware Network Adapter VMnet8两个网络适配器,VMnet1是针对桥接 ...

  9. 【整理】虚拟机和主机ping不通解决办法,虚拟机ping不通外网的解决方法

     检查几个方面: 1.检查虚拟网卡有没有被禁用2.检查虚拟机与物理机是否在一个VMNet中3.检查虚拟机的IP地址与物理机对应的VMNet是否在一个网段4.检查虚拟机与物理机的防火墙是否允许PING, ...

  10. MongoDB之Replica Sets环境搭建

    最近学习MongoDB,这两天在搭建复制集的时候碰到了不少问题,也踩了好多坑,现在在这里记录下来,以供自己和他人参考 (因为本人是初学者,所以遇到的问题也会比较初级,所以本文也比较适合初学者查阅) 背 ...