【FFT】学习笔记
首先,多项式有两种表示方式,系数表示和点值表示
对于两个多项式相乘而言,用系数表示进行计算是O(n^2)的
而用点值表示进行计算是O(n)的
那么我们自然就会去想如果把系数表示的多项式转化为点值表示的多项式进行计算,不就可以减少时间复杂度了么
然而,一般情况下系数表示的多项式想要转化成点值表示的多项式,或是点值表示的多项式想要转化成系数表示的多项式,复杂度都是O(n^2)的
但这只是一般情况
我们可以通过取特殊值把系数表示转化成点值表示,这样的话能把复杂度降到O(nlogn),这就是DFT了
同样通过求逆之类的操作可以把点值表示转换为系数表示,同样复杂度为O(nlogn),这就是IDFT了
嘛。。。
简单来说就是这样的吧
代码
//by 减维
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<bitset>
#include<set>
#include<cmath>
#include<vector>
#include<set>
#include<map>
#include<ctime>
#include<algorithm>
#define ll long long
#define il inline
#define rg register
#define db double
#define mpr make_pair
#define maxn 200005
#define inf (1<<30)
#define eps 1e-8
#define pi 3.1415926535897932384626
using namespace std; inline int read()
{
int ret=;bool fla=;char ch=getchar();
while((ch<''||ch>'')&&ch!='-')ch=getchar();
if(ch=='-'){fla=;ch=getchar();}
while(ch>=''&&ch<=''){ret=ret*+ch-'';ch=getchar();}
return fla?-ret:ret;
} struct cp{
db x,y;
}A[maxn],B[maxn],C[maxn],D[maxn]; int n,m,mx,len,rev[maxn],a[maxn],cnt[maxn]; cp operator + (const cp &x,const cp &y){return (cp){x.x+y.x,x.y+y.y};}
cp operator - (const cp &x,const cp &y){return (cp){x.x-y.x,x.y-y.y};}
cp operator * (const cp &x,const cp &y){return (cp){x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x};} void FFT(cp *a,int op)
{
for(int i=;i<n;++i) if(rev[i]>i) swap(a[i],a[rev[i]]);
for(int k=;k<n;k<<=)
{
cp omi=(cp){cos(pi/k),sin(pi/k)*op};
for(int i=;i<n;i+=(k<<))
{
cp w=(cp){1.0,0.0};
for(int j=;j<k;++j,w=w*omi)
{
cp x=a[i+j],y=a[i+j+k]*w;
a[i+j]=x+y,a[i+j+k]=x-y;
}
}
}
if(op==-) for(int i=;i<n;++i) a[i].x/=n;
} int main()
{
n=read();
for(int i=,x;i<=n;++i) x=read(),mx=max(mx,*x),A[x].x=,B[x*].x=,C[x*].x=;
m=mx;
for(n=;n<=m;n<<=) len++;
for(int i=;i<n;++i) rev[i]=(rev[i>>]>>)|((i&)<<(len-));
FFT(A,);FFT(B,),FFT(C,);
for(int i=;i<n;++i)
{
cp tmp1=(cp){1.0/6.0,};
cp tmp2=(cp){3.0,};
cp tmp3=(cp){2.0,};
cp tmp4=(cp){1.0/2.0,};
D[i]=(A[i]*A[i]*A[i]-tmp2*B[i]*A[i]+tmp3*C[i])*tmp1;
D[i]=D[i]+(A[i]*A[i]-B[i])*tmp4;
D[i]=D[i]+A[i];
}
FFT(D,-);
for(int i=;i<n;++i)
{
int pri=(int)(D[i].x+0.5);
if(pri>) printf("%d %d\n",i,pri);
}
return ;
}
【FFT】学习笔记的更多相关文章
- 快速傅里叶变换(FFT)学习笔记
定义 多项式 系数表示法 设\(A(x)\)表示一个\(n-1\)次多项式,则所有项的系数组成的\(n\)维向量\((a_0,a_1,a_2,\dots,a_{n-1})\)唯一确定了这个多项式. 即 ...
- 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...
- 快速傅里叶变换(FFT)学习笔记(其一)
再探快速傅里叶变换(FFT)学习笔记(其一) 目录 再探快速傅里叶变换(FFT)学习笔记(其一) 写在前面 为什么写这篇博客 一些约定 前置知识 多项式卷积 多项式的系数表达式和点值表达式 单位根及其 ...
- 快速傅里叶变换(FFT)学习笔记(其二)(NTT)
再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 写在前面 一些约定 前置知识 同余类和剩余系 欧拉定理 阶 原根 求原根 NTT ...
- 口胡FFT现场(没准就听懂了)&&FFT学习笔记
前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...
- 【笔记篇】(理论向)快速傅里叶变换(FFT)学习笔记w
现在真是一碰电脑就很颓废啊... 于是早晨把电脑锁上然后在旁边啃了一节课多的算导, 把FFT的基本原理整明白了.. 但是我并不觉得自己能讲明白... Fast Fourier Transformati ...
- FFT学习笔记
快速傅里叶变换FFT(Fast Fourior Transform) 先说一下它能干嘛qwq 傅里叶变换有两种,连续傅里叶变换和离散傅里叶变换,OI中主要用来快速计算多项式卷积. 等一下,卷积是啥 ...
- 多项式乘法(FFT)学习笔记
------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法 ...
- 【文文殿下】快速傅里叶变换(FFT)学习笔记
多项式 定义 形如\(A(x)=\sum_{i=0}^{n-1} a_i x^i\)的式子称为多项式. 我们把\(n\)称为该多项式的次数界. 显然,一个\(n-1\)次多项式的次数界为\(n\). ...
- 分治 FFT学习笔记
先给一道luogu板子题:P4721 [模板]分治 FFT 今天模拟有道题的部分分做法是分治fft,于是就学了一下.感觉不是很难,国赛上如果推出式子的话应该能写出来. 分治fft用来解决这么一个式子\ ...
随机推荐
- CDOJ 485 UESTC 485 Game (八数码变形,映射,逆cantor展开)
题意:八数码,但是转移的方式是转动,一共十二种,有多组询问,初态唯一,终态不唯一. 题解:初态唯一,那么可以预处理出012345678的所有转移情况,然后将初态对012345678做一个映射,再枚举一 ...
- 【转】iOS开发-文件管理(一)
iOS开发-文件管理(一) 一.iOS中的沙盒机制 iOS应用程序只能对自己创建的文件系统读取文件,这个独立.封闭.安全的空间,叫做沙盒.它一般存放着程序包文件(可执行文件).图片.音频.视频.pli ...
- 【转】 iOS学习之NSBundle介绍和使用
bundle是一个目录,其中包含了程序会使用到的资源.这些资源包含了如图像,声音,编译好的代码,nib文件(用户也会把bundle称为plug-in).对应bundle, cocoa提供了类NSBun ...
- Python2 和Python3 的区别
print Python 2中的print语句被Python 3中的print()函数取代,这意味着在Python 3中必须用括号将需要输出的对象括起来. 在Python 2中使用额外的括号也是可以的 ...
- java ArrayList remove
packimport java.util.ArrayList;import java.util.List; public class ArrayListRemove { public static v ...
- 第二单元OO总结
目录 前言 一.第一次作业分析 1. UML及复杂度分析 二.第二次作业分析 1. UML及复杂度分析 2. 性能优化 2.1 楼层类的实现 2.2 调度算法 3. bug分析 三.第三次作业分析 1 ...
- 学习JavaScript你必须掌握的8大知识点!
大知识点! 一.JavaScript思维导图之<变量>的学习 二. JavaScript思维导图之<函数基础> 三.JavaScript思维导图之<基本dom操作 ...
- 文件下载(NSURLConnection/NSURLSession)
最基本的网络文件下载(使用原生的网络请求) #pragma mark - 小文件下载 // 方法一: NSData dataWithContentsOfURL - (void)downloadFile ...
- VS/Qt C++和Matlab混合编程
最近两天在搞C++和Matlab混合编程,这个中间过程真是让人心酸啊,最后还是搞定成功!现在把这个过程记录一下. 首先自己的电脑本来就安装着matlab2013b,按着网上的说法首先需要输入!mcc, ...
- Docker DockerFile文件指令 & 构建
1.dockerfile指令格式 # Comment注释 INSTRUCTION argument指令名 + 参数 2.普通指令 1. FROM 已存在的镜像,基础镜像,第一条非注释指令 FROM & ...