Posix线程编程指南(3)
尽管在Posix
Thread中同样可以使用IPC的信号量机制来实现互斥锁mutex功能,但显然semphore的功能过于强大了,在Posix
Thread中定义了另外一套专门用于线程同步的mutex函数。
创建和销毁
有两种方法创建互斥锁,静态方式和动态方式。POSIX定义了一个宏PTHREAD_MUTEX_INITIALIZER来静态初始化互斥锁,方法如下:
pthread_mutex_t
mutex=PTHREAD_MUTEX_INITIALIZER;
在LinuxThreads实现中,pthread_mutex_t是一个结构,而PTHREAD_MUTEX_INITIALIZER则是一个结构常量。
int
pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t
*mutexattr)
其中mutexattr用于指定互斥锁属性(见下),如果为NULL则使用缺省属性。
int
pthread_mutex_destroy(pthread_mutex_t *mutex)
销毁一个互斥锁即意味着释放它所占用的资源,且要求锁当前处于开放状态。由于在Linux中,互斥锁并不占用任何资源,因此LinuxThreads中的pthread_mutex_destroy()除了检查锁状态以外(锁定状态则返回EBUSY)没有其他动作。
互斥锁属性
互斥锁的属性在创建锁的时候指定,在LinuxThreads实现中仅有一个锁类型属性,不同的锁类型在试图对一个已经被锁定的互斥锁加锁时表现不同。当前(glibc2.2.3,linuxthreads0.9)有四个值可供选择:
- PTHREAD_MUTEX_TIMED_NP,这是缺省值,也就是普通锁。当一个线程加锁以后,其余请求锁的线程将形成一个等待队列,并在解锁后按优先级获得锁。这种锁策略保证了资源分配的公平性。
- PTHREAD_MUTEX_RECURSIVE_NP,嵌套锁,允许同一个线程对同一个锁成功获得多次,并通过多次unlock解锁。如果是不同线程请求,则在加锁线程解锁时重新竞争。
- PTHREAD_MUTEX_ERRORCHECK_NP,检错锁,如果同一个线程请求同一个锁,则返回EDEADLK,否则与PTHREAD_MUTEX_TIMED_NP类型动作相同。这样就保证当不允许多次加锁时不会出现最简单情况下的死锁。
- PTHREAD_MUTEX_ADAPTIVE_NP,适应锁,动作最简单的锁类型,仅等待解锁后重新竞争。
锁操作
锁操作主要包括加锁pthread_mutex_lock()、解锁pthread_mutex_unlock()和测试加锁pthread_mutex_trylock()三个,不论哪种类型的锁,都不可能被两个不同的线程同时得到,而必须等待解锁。对于普通锁和适应锁类型,解锁者可以是同进程内任何线程;而检错锁则必须由加锁者解锁才有效,否则返回EPERM;对于嵌套锁,文档和实现要求必须由加锁者解锁,但实验结果表明并没有这种限制,这个不同目前还没有得到解释。在同一进程中的线程,如果加锁后没有解锁,则任何其他线程都无法再获得锁。
int
pthread_mutex_lock(pthread_mutex_t *mutex)
int
pthread_mutex_unlock(pthread_mutex_t *mutex)
int
pthread_mutex_trylock(pthread_mutex_t *mutex) 其他
POSIX线程锁机制的Linux实现都不是取消点,因此,延迟取消类型的线程不会因收到取消信号而离开加锁等待。值得注意的是,如果线程在加锁后解锁前被取消,锁将永远保持锁定状态,因此如果在关键区段内有取消点存在,或者设置了异步取消类型,则必须在退出回调函数中解锁。
条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待"条件变量的条件成立"而挂起;另一个线程使"条件成立"(给出条件成立信号)。为了防止竞争,条件变量的使用总是和一个互斥锁结合在一起。
创建和注销
条件变量和互斥锁一样,都有静态动态两种创建方式,静态方式使用PTHREAD_COND_INITIALIZER常量,如下:
pthread_cond_t
cond=PTHREAD_COND_INITIALIZER
int
pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr)
int
pthread_cond_destroy(pthread_cond_t *cond)
等待和激发
int
pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
int
pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const
struct timespec *abstime) Condition)。mutex互斥锁必须是普通锁(PTHREAD_MUTEX_TIMED_NP)或者适应锁(PTHREAD_MUTEX_ADAPTIVE_NP),且在调用pthread_cond_wait()前必须由本线程加锁(pthread_mutex_lock()),而在更新条件等待队列以前,mutex保持锁定状态,并在线程挂起进入等待前解锁。在条件满足从而离开pthread_cond_wait()之前,mutex将被重新加锁,以与进入pthread_cond_wait()前的加锁动作对应。
其他
pthread_cond_wait()和pthread_cond_timedwait()都被实现为取消点,因此,在该处等待的线程将立即重新运行,在重新锁定mutex后离开pthread_cond_wait(),然后执行取消动作。也就是说如果pthread_cond_wait()被取消,mutex是保持锁定状态的,因而需要定义退出回调函数来为其解锁。
#i nclude <stdio.h>
#i nclude <pthread.h>
#i nclude <unistd.h>
pthread_mutex_t mutex;
pthread_cond_t cond;
void * child1(void *arg){
pthread_cleanup_push(pthread_mutex_unlock,&mutex); /* comment 1 */
while(1){
printf("thread 1 get running n");
printf("thread 1 pthread_mutex_lock returns %dn",pthread_mutex_lock(&mutex));
pthread_cond_wait(&cond,&mutex);
printf("thread 1 condition appliedn");
pthread_mutex_unlock(&mutex);
sleep(5);
}
pthread_cleanup_pop(0); /* comment 2 */
}
void *child2(void *arg){
while(1){
sleep(3);
/* comment 3 */
printf("thread 2 get running.n");
printf("thread 1 pthread_mutex_lock returns %d\n",
pthread_mutex_lock(&mutex));
pthread_cond_wait(&cond,&mutex);
printf("thread 1 condition applied\n");
pthread_mutex_unlock(&mutex);
sleep(5);
}
pthread_cleanup_pop(0); /* comment 2 */
}
void *child2(void *arg)
{
while(1){
sleep(3); /* comment 3 */
printf("thread 2 get running.\n");
printf("thread 2 pthread_mutex_lock returns %d\n",
pthread_mutex_lock(&mutex));
pthread_cond_wait(&cond,&mutex);
printf("thread 2 condition applied\n");
pthread_mutex_unlock(&mutex);
sleep(1);
}
}
int main(void)
{
int tid1,tid2;
printf("hello, condition variable test\n");
pthread_mutex_init(&mutex,NULL);
pthread_cond_init(&cond,NULL);
pthread_create(&tid1,NULL,child1,NULL);
pthread_create(&tid2,NULL,child2,NULL);
do{
sleep(2); /* comment 4 */
pthread_cancel(tid1); /* comment 5 */
sleep(2); /* comment 6 */
pthread_cond_signal(&cond);
}while(1);
sleep(100);
pthread_exit(0);
}如果不做注释5的pthread_cancel()动作,即使没有那些sleep()延时操作,child1和child2都能正常工作。注释3和注释4的延迟使得child1有时间完成取消动作,从而使child2能在child1退出之后进入请求锁操作。如果没有注释1和注释2的回调函数定义,系统将挂起在child2请求锁的地方;而如果同时也不做注释3和注释4的延时,child2能在child1完成取消动作以前得到控制,从而顺利执行申请锁的操作,但却可能挂起在pthread_cond_wait()中,因为其中也有申请mutex的操作。child1函数给出的是标准的条件变量的使用方式:回调函数保护,等待条件前锁定,pthread_cond_wait()返回后解锁。
信号灯
1. 创建和注销 这是创建信号灯的API,其中value为信号灯的初值,pshared表示是否为多进程共享而不仅仅是用于一个进程。LinuxThreads没有实现多进程共享信号灯,因此所有非0值的pshared输入都将使sem_init()返回-1,且置errno为ENOSYS。初始化好的信号灯由sem变量表征,用于以下点灯、灭灯操作。
sem_destroy(sem_t * sem)
被注销的信号灯sem要求已没有线程在等待该信号灯,否则返回-1,且置errno为EBUSY。除此之外,LinuxThreads的信号灯注销函数不做其他动作。
2.点灯和灭灯
int sem_post(sem_t * sem) |
点灯操作将信号灯值原子地加1,表示增加一个可访问的资源。
int sem_wait(sem_t * sem) int sem_trywait(sem_t * sem) |
sem_wait()为等待灯亮操作,等待灯亮(信号灯值大于0),然后将信号灯原子地减1,并返回。sem_trywait()为sem_wait()的非阻塞版,如果信号灯计数大于0,则原子地减1并返回0,否则立即返回-1,errno置为EAGAIN。
3. 获取灯值 int sem_getvalue(sem_t * sem, int * sval)
4. 其他
异步信号 设置线程的信号屏蔽码,语义与sigprocmask()相同,但对不允许屏蔽的Cancel信号和不允许响应的Restart信号进行了保护。被屏蔽的信号保存在信号队列中,可由sigpending()函数取出。
pthread_kill(pthread_t thread, int signo)
向thread号线程发送signo信号。实现中在通过thread线程号定位到对应进程号以后使用kill()系统调用完成发送。
sigwait(const sigset_t *set, int *sig)
挂起线程,等待set中指定的信号之一到达,并将到达的信号存入*sig中。POSIX标准建议在调用sigwait()等待信号以前,进程中所有线程都应屏蔽该信号,以保证仅有sigwait()的调用者获得该信号,因此,对于需要等待同步的异步信号,总是应该在创建任何线程以前调用pthread_sigmask()屏蔽该信号的处理。而且,调用sigwait()期间,原来附接在该信号上的信号处理函数不会被调用。
其他同步方式
V的信号灯等。只有一点需要注意,LinuxThreads在核内是作为共享存储区、共享文件系统属性、共享信号处理、共享文件描述符的独立进程看待的。
Posix线程编程指南(3)的更多相关文章
- Posix线程编程指南
Posix线程编程指南 Posix线程编程指南... 1 一线程创建与取消... 2 线程创建... 2 1.线程与进程... 2 2. 创建线程... 2 3. 线程创建属性... 2 4. 创建的 ...
- Posix线程编程指南(5)
Posix线程编程指南(5) 杨沙洲 原文地址:http://www.ibm.com/developerworks/cn/linux/thread/posix_threadapi/part5/ 杂项 ...
- Posix线程编程指南(4)
Posix线程编程指南(4) 杨沙洲 原文地址:http://www.ibm.com/developerworks/cn/linux/thread/posix_threadapi/part4/ 线程终 ...
- Posix线程编程指南(2)
这是一个关于Posix线程编程的专栏.作者在阐明概念的基础上,将向您详细讲述Posix线程库API.本文是第2篇将向您讲述线程的创建与取消. 一.概念及作用在单线程程序中,我们经常要用到"全 ...
- Posix线程编程指南(1)
这是一个关于Posix线程编程的专栏.作者在阐明概念的基础上,将向您详细讲述Posix线程库API.本文是第一篇将向您讲述线程的创建与取消. 一.线程创建 1.1 线程与进程相对进程而言,线程是一 ...
- Posix线程编程指南(4) 线程终止
线程终止方式 一般来说,Posix的线程终止有两种情况:正常终止和非正常终止.线程主动调用pthread_exit()或者从线程函数中return都将使线程正常退出,这是可预见的退出方式:非正常终止是 ...
- Posix线程编程指南(5) 杂项
在Posix线程规范中还有几个辅助函数难以归类,暂且称其为杂项函数,主要包括pthread_self().pthread_equal()和pthread_once()三个,另外还有一个LinuxThr ...
- Posix线程编程指南(2) 线程私有数据
概念及作用 在单线程程序中,我们经常要用到"全局变量"以实现多个函数间共享数据.在多线程环境下,由于数据空间是共享的,因此全局变量也为所有线程所共有.但有时应用程序设计中有必要提供 ...
- Posix线程编程指南(3) 线程同步
互斥锁 尽管在Posix Thread中同样可以使用IPC的信号量机制来实现互斥锁mutex功能,但显然semphore的功能过于强大了,在Posix Thread中定义了另外一套专门用于线程同步的m ...
随机推荐
- Qt on Android:将Qt调试信息输出到logcat中
版权全部 foruok .如需转载敬请注明出处(http://blog.csdn.net/foruok). 假设你在目标 Android 设备上执行了 Qt on Android 应用,你可能希望看到 ...
- mini2440裸机试炼之——Uart与pc端实现文件、字符传输
1. 波特率(Baud rate)即调制速率,1波特即指每秒传输1个符号. 2. 非FIFO模式,即数据传输不利用FIFO缓存,一个字节一个字节地传输. 3. 位能够用来推断发送缓存器中是否为空 ...
- modelsim-altera IP核仿真
modelsim 仿真fifo时出现 Instantiation of 'scfifo' failed. The design unit was not found. 2012-07-21 13:27 ...
- 配置Spring的用于解决懒加载问题的过滤器
<?xml version="1.0" encoding="UTF-8"?><web-app version="2.5" ...
- 【PyCharm编辑器】之无法导入引用手动新建的包或类,报:This inspection detects names that should resolve but don't. Due to dynamic dispatch and duck typing, this is possible in a limited but useful number of cases.
一.现象描述 如下图所示,手动新建个类包calculator.py,想在test.py文件引用它,发现一直报红线,引用失败 Unresolved reference 'calculator' less ...
- 【EDAS问题】轻量级EDAS部署hsf服务出现找不到类的解决方案
本地运行轻量级EDAS调用服务的时候报错如下: 2018-01-08 13:16:58.029 WARN [http-bio-8090-exec-8:t.hsf] [RPC Protocol call ...
- EasyDSS RTMP流媒体服务器是怎样炼成的:Easy而且更加互联网!
开发EasyDSS的初衷 自从12年开始做EasyDarwin的时候,当时眼光一直都仅仅局限在安防监控视频这一块,对RTMP没有太大的重视,对于后起之秀HLS更是没有太多关注,然而经历了15直播火热的 ...
- maven 配置: 修改默认的 .m2仓库 默认存储路径.
maven 配置: 修改默认的 .m2仓库 默认存储路径. 一 .在系统maven里修改 1.在maven_HOME/conf/下找到配置文档 settings.xml 在文档中添加如下的配置说明 & ...
- mac上完整卸载删除.简单粗暴无脑:androidstudio删除方案
如果你是mac ,你删除as ,删不干净也正常,你会发现安装的时候,前面的东西也在.配置文件在,会导致你以前的错误不想要的东西都在. 废话不多说,复制粘贴就是干!!!!~~~~~~~~ 第一步: 复 ...
- BZOJ4829: [Hnoi2017]队长快跑
BZOJ4829: [Hnoi2017]队长快跑 Description 众所周知,在P国外不远处盘踞着巨龙大Y. 传说中,在远古时代,巨龙大Y将P国的镇国之宝窃走并藏在了其巢穴中,这吸引着整个P国的 ...