[LOJ#2324]「清华集训 2017」小Y和二叉树
[LOJ#2324]「清华集训 2017」小Y和二叉树
试题描述
小Y是一个心灵手巧的OIer,她有许多二叉树模型。
小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上,树根在最上面,左右子树分别在树根的左下方与右下方,且他们也都满足这样的悬挂规则。为了让这个模型更加美观,小Y选择了一种让这棵二叉树的中序遍历序列最小的悬挂方法。所谓中序遍历最小,就是指中序遍历的结点编号序列的字典序最小。
一天,这个模型不小心被掉在了地上,幸运的是,所有结点和边都没摔坏,但是她想不起这个模型原来是怎么悬挂的了,也就是说:她想不起来树根节点的编号了。
小Y最近忙于准备清华集训,所以没太多时间处理别的事情,她只好找到同样心灵手巧的你帮忙复原她的二叉树模型。
给定小Y的二叉树模型,结点的编号为 \(1\) ~ \(n\) ,你需要给出其可能的最小的中序遍历,方便小Y更快的摆好她的模型。
输入
第一行为一个正整数 \(n\) ,表示点的个数。
后接 \(n\) 行,每行若干个整数:
第 \(i+1\) 行的第一个整数为 \(k_i\),表示编号为 \(i\) 的结点的度数,后接 \(k_i\) 个整数 \(a_{i,j}\),表示编号为 \(i\) 的结点与编号为 \(a_{i,j}\) 的结点之间有一条边。
同一行输入的相邻两个元素之间,用恰好一个空格隔开。
输出
输出共一行, \(n\) 个整数,表示字典序最小的中序遍历。
输入示例
4
3 2 3 4
1 1
1 1
1 1
输出示例
2 1 3 4
数据规模及约定
对于 \(100\%\) 的数据,\(1 \le n \le 1000000, 1 \le k_i \le 3\)。
题解
首先我们可以 dp 出每个节点为根时所能得到的中序遍历最小的第一位。这个就是先随便选一个度数 \(<3\) 的当根,然后正反 dp 一下。
令 \(g_i\) 表示以 \(i\) 为根时最小的中序遍历的第一位(若 \(i\) 度数为 \(3\),则 \(g_i\) 无意义)。现在可以确定最后答案的第一位一定是 \(min\{g_i\}\),令 \(r = min\{g_i\}\),那么我们现在以 \(r\) 为根,求一下 \(f_i\)(即以 \(i\) 为根的子树的中序遍历的最小的第一位),可以发现可以把 \(r\) “看成”根,在填完 \(r\) 的时候,选择一个拥有较小 \(f_i\) 的儿子 \(i\) 递归(在原树中就是把这个儿子甩到右儿子的位置,另一个儿子甩到父亲的位置:即 \(左 \rightarrow 根 \rightarrow 右\) 变成了 \(右 \rightarrow 根 \rightarrow 父节点\),虽然树的形态改变,但中序遍历本身没有变),然后把另一个儿子接着“看成根”,再递归(注意还有如“只有一个儿子”等特殊情况,注意特判)……以此类推直至遍历完所有节点。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define rep(i, s, t) for(int i = (s); i <= (t); i++)
#define dwn(i, s, t) for(int i = (s); i >= (t); i--)
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
}
#define maxn 1000010
#define maxm 2000010
int n, deg[maxn], m, head[maxn], nxt[maxm], to[maxm];
void AddEdge(int a, int b) {
to[++m] = b; nxt[m] = head[a]; head[a] = m;
return ;
}
int f[maxn], g[maxn];
void dp1(int u, int fa) {
f[u] = (fa && deg[u] < 3) ? u : n + 1;
for(int e = head[u]; e; e = nxt[e]) if(to[e] != fa) dp1(to[e], u), f[u] = min(f[u], f[to[e]]);
return ;
}
void dp2(int u, int fa) {
if(fa) g[u] = min(g[fa], deg[fa] < 3 ? fa : n + 1);
else g[u] = n + 1;
int ls = -1, rs = -1;
for(int e = head[u]; e; e = nxt[e]) if(to[e] != fa) {
if(ls < 0) ls = to[e]; else rs = to[e];
}
if(ls < 0 && rs < 0) return ;
if(rs < 0) {
dp2(ls, u);
g[u] = min(g[u], f[ls]);
return ;
}
int org = g[u];
g[u] = min(org, f[rs]); dp2(ls, u);
g[u] = min(org, f[ls]); dp2(rs, u);
g[u] = min(org, min(f[ls], f[rs]));
return ;
}
int Ans[maxn], cnta;
void dfs(int u, int fa, bool type) {
int ls = -1, rs = -1;
for(int e = head[u]; e; e = nxt[e]) if(to[e] != fa) {
if(ls < 0) ls = to[e]; else rs = to[e];
}
if(ls < 0 && rs < 0){ Ans[++cnta] = u; return ; }
if(rs < 0) {
if(type) Ans[++cnta] = u, dfs(ls, u, 0);
else {
if(u == f[u]) Ans[++cnta] = u, dfs(ls, u, 0);
else dfs(ls, u, 0), Ans[++cnta] = u;
}
return ;
}
if(f[ls] > f[rs]) swap(ls, rs);
if(type) Ans[++cnta] = u, dfs(ls, u, 0), dfs(rs, u, 1);
else dfs(ls, u, 0), Ans[++cnta] = u, dfs(rs, u, 0);
return ;
}
int main() {
n = read();
int rt;
rep(i, 1, n) {
deg[i] = read();
rep(j, 1, deg[i]) AddEdge(i, read());
if(deg[i] < 3) rt = i;
}
if(n == 1) return puts("1"), 0;
dp1(rt, 0);
dp2(rt, 0);
int root = n + 1;
rep(i, 1, n) root = min(root, g[i]);
// printf("g: "); rep(i, 1, n) printf("%d%c", g[i], i < n ? ' ' : '\n');
dp1(root, 0);
dfs(root, 0, 1);
rep(i, 1, cnta) printf("%d%c", Ans[i], i < cnta ? ' ' : '\n');
return 0;
}
[LOJ#2324]「清华集训 2017」小Y和二叉树的更多相关文章
- Loj #2324. 「清华集训 2017」小 Y 和二叉树
Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...
- [LOJ#2323]「清华集训 2017」小Y和地铁
[LOJ#2323]「清华集训 2017」小Y和地铁 试题描述 小Y是一个爱好旅行的OIer.一天,她来到了一个新的城市.由于不熟悉那里的交通系统,她选择了坐地铁. 她发现每条地铁线路可以看成平面上的 ...
- loj #2325. 「清华集训 2017」小Y和恐怖的奴隶主
#2325. 「清华集训 2017」小Y和恐怖的奴隶主 内存限制:256 MiB时间限制:2000 ms标准输入输出 题目类型:传统评测方式:文本比较 题目描述 "A fight? Co ...
- loj2324 「清华集训 2017」小 Y 和二叉树
https://loj.ac/problem/2324 太智障,一开始以为中序遍历的第一个点一定是一个叶子,想了个贪心.然而,手算了一下,第一个点都过不了啊. input 5 2 3 4 1 3 3 ...
- LOJ2324. 「清华集训 2017」小 Y 和二叉树【贪心】【DP】【思维】【好】
LINK 思路 首先贪新的思路是处理出以一个节点为根所有儿子的子树中中序遍历起始节点最小是多少 然后这个可以两次dfs来DP处理 然后就试图确定中序遍历的第一个节点 一定是siz<=2的编号最小 ...
- LOJ2324「清华集训 2017」小Y和二叉树
题目链接 瞎jb贪一发就过了.首先度数<=2且编号最小的点一定是中序遍历最靠前的点,我们从这个点开始dfs一遍算出子树中度数<=2且编号最小的点记为\(f(i)\),然后从这个点开始一步一 ...
- LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)
哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \ ...
- 【loj2325】「清华集训 2017」小Y和恐怖的奴隶主 概率dp+倍增+矩阵乘法
题目描述 你有一个m点生命值的奴隶主,奴隶主受伤未死且当前随从数目不超过k则再召唤一个m点生命值的奴隶主. T次询问,每次询问如果如果对面下出一个n点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输 ...
- LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】
LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...
随机推荐
- ASP.NET各种技巧
1.动态添加文件框 前台页面关键部分: <script type="text/javascript"> //添加一个选项 function AddFileCtrol() ...
- C语言正整数除法向上取整
在网上发现一个简单的向上取整方法: 这里我们用<>表示向上取整,[]表示向下取整,那么怎么来表示这个值呢? 我们可以证明: <N/M>=[(N-1)/M]+1 (0< ...
- IOS后台执行
大多数应用程序进入后台状态不久后转入暂停状态.在这种状态下,应用程序不执行任何代码,并有可能在任意时候从内存中删除.应用程序提供特定的服务,用户可以请求后台执行时间,以提供这些服务. 判断是否支持多线 ...
- GNU汇编 函数调用的例子
.text .global _start _start: mov r1,#2 cmp r1,#1 bl func1 @bl能保存下一条指令的位置到lr寄存器里面,b不能 mov r1, # ...
- 读书笔记-JavaScript面向对象编程(二)
第5章 原型 5.1 原型属性(所有函数拥有一个prototype属性,默认为空对象) 5.1.1 利用原型添加方法和属性 function Gadget(name,color){ this.name ...
- 震惊!几道Python 理论面试题,Python面试题No18
本面试题题库,由公号:非本科程序员 整理发布 第1题: 简述解释型和编译型编程语言? 解释型语言编写的程序不需要编译,在执行的时候,专门有一个解释器能够将VB语言翻译成机器语言,每个语句都是执行的时候 ...
- python3 包的发布
发布流程大概如下 1. 首先需要有一个python包,就是一个文件夹,但是此文件夹下面有__init__.py文件,里面内容是 现在要发布包TestMsg,这就是一个python包.在同级目录下新建s ...
- vim编辑器最简单使用方法
i 输入模式 :q 不保存退出 :q! 强制退出 :wq 保存退出 j 下 k 上 h 左 l 右 gg start G end x 往后删 X 往前删 yy 复制行 p 粘贴 dd 剪切行 u 撤销 ...
- 《鸟哥的Linux私房菜》学习笔记(9)——条件判断
一.条件判断表达式 条件测试类型: 整数测试 字符测试 文件测试 条件测试的表达式 [ ...
- [原]sencha touch之panel和tabpanel
最近在弄senchatouch的项目,所以边学习边开发,边记录,直接记录下test code如下: Panel: Ext.application({ name:'itKingApp', launch: ...