定义

$f(x)$ 关于 $x_0, x_1, \dots, x_k$ 的 $k$ 阶均差(差商)记做 $ f [x_0, x_1, \dots, x_k] $,均差是递归定义的,有两种等价定义

\begin{align}
f[x] &= f(x)\notag\\
f[x_0,x_1,\dots,x_k] &=\frac{f[x_0, x_1, \dots, x_{k-2}, x_{k-1}] - f[x_1, x_2, \dots, x_{k-1}, x_{k}]}{x_0 - x_k}\label{E:1}\\
&= \frac{ f[x_0, x_1, \dots, x_{k-2}, x_{k-1}] - f [x_0, x_1, \dots, x_{k-2}, x_{k}] } { x_{k-1} - x_{k} }
\end{align}

编程实现时,\eqref{E:1} 式更为方便。令 $d_{i,j} = f [x_i, x_{i+1}, \dots, x_j] $,则有

\[
d_{i,j} = \frac{d_{i,j-1} - d_{i+1, j} } {x_i - x_j}
\]

Newton 插值法的更多相关文章

  1. 数值分析案例:Newton插值预测2019城市(Asian)温度、Crout求解城市等温性的因素系数

    数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温性的因素系数 文章目录 数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温 ...

  2. Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法

    本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...

  3. Newton插值的C++实现

    Newton(牛顿)插值法具有递推性,这决定其性能要好于Lagrange(拉格朗日)插值法.其重点在于差商(Divided Difference)表的求解. 步骤1. 求解差商表,这里采用非递归法(看 ...

  4. 牛顿插值法——用Python进行数值计算

    拉格朗日插值法的最大毛病就是每次引入一个新的插值节点,基函数都要发生变化,这在一些实际生产环境中是不合适的,有时候会不断的有新的测量数据加入插值节点集, 因此,通过寻找n个插值节点构造的的插值函数与n ...

  5. 拉格朗日插值法——用Python进行数值计算

    插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...

  6. Apply Newton Method to Find Extrema in OPEN CASCADE

    Apply Newton Method to Find Extrema in OPEN CASCADE eryar@163.com Abstract. In calculus, Newton’s me ...

  7. 牛顿方法(Newton's Method)

    在讲义<线性回归.梯度下降>和<逻辑回归>中我们提到可以用梯度下降或梯度上升的方式求解θ.在本文中将讲解另一种求解θ的方法:牛顿方法(Newton's method). 牛顿方 ...

  8. PuppetOpenstack Newton Design Summit见闻

    PS:技术博客已经好久没有来耕耘了,倒不是懒惰,而是最近一直在忙着写一本关于Openstack自动化部署的书籍,我觉得可能会比单独零散的技术文章更有价值一些. 作为重度拖延症患者,又把本来奥斯汀峰会期 ...

  9. 全解┃OpenStack Newton发布,23家中国企业上榜(转载)

    (转载自Openstack中文社区) 陈, 翔 2016-10-8 | 暂无评论 美国奥斯汀时间10月6日(北京时间6日24点),OpenStack Newton版本正式发布,在可扩展性.可靠性和用户 ...

随机推荐

  1. 站点安全预警,建议大家多重禁止load_file函数!

    比如在你的linux机器上运行 select load_file(0x2F6574632F706173737764); 看看结果是什么?这应该不是我们希望看到的. 所以我们禁用这个函数吧. 这个主要通 ...

  2. MicroService 微服务提供者搭建

    本机IP为  192.168.1.102 1.  新建Maven项目   microservice 2.   pom.xml <project xmlns="http://maven. ...

  3. 解决mysql8小时无连接自动断掉机制

    windows下打开my.ini,增加: interactive_timeout=28800000 wait_timeout=28800000 MySQL是一个小型关系型数据库管理系统,由于MySQL ...

  4. PAT (Basic Level) Practise (中文)- 1002. 写出这个数 (20)

    http://www.patest.cn/contests/pat-b-practise/1002 读入一个自然数n,计算其各位数字之和,用汉语拼音写出和的每一位数字. 输入格式:每个测试输入包含1个 ...

  5. 【转】C++ 标准库值操作迭代器的常见函数

    迭代器是C++标准库中的重要组件,特别是在容器内部,没有迭代器,容器也就无所谓存在了. 例如:vector容器简而言之就是3个迭代器 start finish 以及end_of_storage vec ...

  6. JDK和CGLIB动态代理原理区别

    JDK和CGLIB动态代理原理区别 https://blog.csdn.net/yhl_jxy/article/details/80635012 2018年06月09日 18:34:17 阅读数:65 ...

  7. 开启PHP-LDAP

    LDAP简介: LDAP(Lightweight Directory Access Protocol)的意思是"轻量级目录访问协议",是一个用于访问"目录服务器" ...

  8. neo4j 安装

    查看 http://ip:7474/browser/

  9. ajax400错误

    在用ajax向后台传递参数时,页面一直显示错误400 bad request. 出现这个问题的原因是,要传递的VO类里一个实体bean里面的两个字段名称与前台表单序列化之后的name名称不匹配. 解决 ...

  10. web前后台数据交互的几种方式

    1.利用cookie对象 Cookie是服务器保存在客户端中的一小段数据信息.使用Cookie有一个前提,就是客户端浏览器允许使用Cookie并对此做出相应的设置.一般不赞成使用Cookie. (1) ...