题目链接

POJ1848

题解

由题,一个环至少由三个点组成,一个点作为根时,可以单独成链,可以与其一个儿子成链,或者与其两个儿子成环,与其一个剩余链长度大于等于2的儿子成环。

那么我们设最小代价

\(f[u][0]\)表示以\(u\)为根全部成环

\(f[u][1]\)表示除\(u\)外全部成环

\(f[u][2]\)表示除\(u\)和一个儿子的一条长度至少为\(1\)的链外全部成环

转移就很容易想

记\(sum = \sum\limits_{(u,v) \in edge} f[v][0]\)

\[f[u][1] = sum
\]

\[f[u][2] = min\{\sum\limits_{(u,v) \in edge} min(f[v][1],f[v][2]) + (sum - f[v][0]) \}
\]

\[f[u][0] = min\{ \sum\limits_{(u,v) \in edge} \sum\limits_{(u,k) \in edge} min(f[v][1],f[v][2]) + min(f[k][1],f[k][2]) + (sum - f[v][0] - f[k][0]) + 1\}
\]

\[f[u][0] = min\{ \sum\limits_{(u,v) \in edge} f[v][2] + (sum - f[v][0]) + 1 \}
\]

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 105,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 2;
struct EDGE{int to,nxt;}ed[maxn << 1];
inline void build(int u,int v){
ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v]}; h[v] = ne++;
}
int n,fa[maxn],s[maxn];
LL f[maxn][3];
void dfs(int u){
f[u][0] = f[u][2] = INF; f[u][1] = 0; LL sum = 0;
Redge(u) if ((to = ed[k].to) != fa[u]){
fa[to] = u; dfs(to);
f[u][1] += f[to][0];
sum += f[to][0];
}
int cnt = 0; LL tmp;
Redge(u) if ((to = ed[k].to) != fa[u]){
s[++cnt] = to;
f[u][2] = min(f[u][2],min(f[to][1],f[to][2]) + sum - f[to][0]);
f[u][0] = min(f[u][0],f[to][2] + sum - f[to][0] + 1);
}
REP(i,cnt) REP(j,cnt) if (i != j){
tmp = min(f[s[i]][1],f[s[i]][2]) + min(f[s[j]][1],f[s[j]][2]) + sum - f[s[i]][0] - f[s[j]][0];
f[u][0] = min(f[u][0],tmp + 1);
}
}
int main(){
while (~scanf("%d",&n) && n){
ne = 2; memset(h,0,sizeof(h));
for (int i = 1; i < n; i++) build(read(),read());
dfs(1);
if (f[1][0] >= INF) puts("-1");
else printf("%lld\n",f[1][0]);
}
return 0;
}

POJ1848 Tree 【树形dp】的更多相关文章

  1. 熟练剖分(tree) 树形DP

    熟练剖分(tree) 树形DP 题目描述 题目传送门 分析 我们设\(f[i][j]\)为以\(i\)为根节点的子树中最坏时间复杂度小于等于\(j\)的概率 设\(g[i][j]\)为当前扫到的以\( ...

  2. hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)

    题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: ...

  3. CF 461B Appleman and Tree 树形DP

    Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...

  4. codeforces 161D Distance in Tree 树形dp

    题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...

  5. hdu6035 Colorful Tree 树形dp 给定一棵树,每个节点有一个颜色值。定义每条路径的值为经过的节点的不同颜色数。求所有路径的值和。

    /** 题目:hdu6035 Colorful Tree 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6035 题意:给定一棵树,每个节点有一个颜色值.定 ...

  6. 5.10 省选模拟赛 tree 树形dp 逆元

    LINK:tree 整场比赛看起来最不可做 确是最简单的题目. 感觉很难写 不过单独考虑某个点 容易想到树形dp的状态. 设f[x]表示以x为根的子树内有黑边的方案数. 白边方案只有一种所以不用记录. ...

  7. Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】

    题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...

  8. codeforces Round #263(div2) D. Appleman and Tree 树形dp

    题意: 给出一棵树,每个节点都被标记了黑或白色,要求把这棵树的其中k条变切换,划分成k+1棵子树,每颗子树必须有1个黑色节点,求有多少种划分方法. 题解: 树形dp dp[x][0]表示是以x为根的树 ...

  9. POJ 2486 Apple Tree(树形DP)

    题目链接 树形DP很弱啊,开始看题,觉得貌似挺简单的,然后发现貌似还可以往回走...然后就不知道怎么做了... 看看了题解http://www.cnblogs.com/wuyiqi/archive/2 ...

  10. [Ccodeforces 736C] Ostap and Tree - 树形DP

    给定一个n个点的树,把其中一些点涂成黑色,使得对于每个点,其最近的黑点的距离不超过K. 树形DP. 设置状态f[i][j]: 当j <= K时: 合法状态,表示i的子树中到根的最近黑点距离为j的 ...

随机推荐

  1. 进入Windows之前发出警告

    实现效果: 知识运用: 通过注册表中HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\子键下的LegalNoticeCaption ...

  2. C# 接口慨述

    接口(interface)用来定义一种程序的协定.实现接口的类或者结构要与接口的定义严格一致.有了这个协定,就可以抛开编程语言的限制(理论上).接口可以从多个基接口继承,而类或结构可以实现多个接口.接 ...

  3. 第十五篇、OC_同一个View实现两个手势响应

    #pragma mark-UIGestureRecognizerDelegate Methods // 只要实现这个方法,就可以实现两个手势同时响应 - (BOOL)gestureRecognizer ...

  4. webSocket使用心跳包实现断线重连

    首先new一个webscoket的连接 let noticeSocketLink = new WebSocket(‘webSocket的地址’) 这里是连接成功之后的操作 linkNoticeWebs ...

  5. Android驱动开发读书笔记六

    第六章 Linux 驱动的工作和访问方式是 Linux 的亮点之一,Linux 系统将每一个驱动都映射成一个文件.这些文件称为设备文件或驱动文件,都保存在/dev目录中,由于大多数Linux驱动都有与 ...

  6. goaccess 安装

    今天尝试搭建goaccess,用于分析access.log文件,但安装并不顺利,小记一下自己遇到的问题及解决方法 系统环境:CentOS release 6.9 一.参照官网教程进行搭建 $ wget ...

  7. 小技巧之padding-bottom实现等比例图片缩放

    1.padding-bottom 如果用%来表示的话,计算是根据父元素的width的值进行计算的. 例:父元素.wrapper的width是100px,height设置为0, padding-bott ...

  8. Python编写一个程序求2的次方

    #!/usr/bin/env python3 #-*- coding:utf-8 -*- #":"冒号后面为对参数注释,"->"为对整个函数注释 def ...

  9. 单片机入门学习笔记6:新唐单片机N76E003

    学习新唐单片机是从2018年3月开始的,之前一点也不懂这一块单片机,之后脉络变的越来越清晰. 由于N76E003档次太低,新塘科技官方的管脚配置,芯片选型……都没有这一块芯片,资料唯独只有:芯片的数据 ...

  10. C++构造函数实例——拷贝构造,赋值

    #define _CRT_SECURE_NO_WARNINGS //windows系统 #include <iostream> #include <cstdlib> #incl ...