SPOJ 422 Transposing is Even More Fun ——Burnside引理
这题目就比较有趣了。
大概题目中介绍了一下计算机的储存方法,给一个$2^a*2^b$的矩阵。
求转置。但是只能交换两个数,求所需要的步数。
首先可以把变化前后的位置写出来,构成了许多的循环。左转将狼踩尽博客
然后就是求循环的个数了。
发现循环都是左移形成的,可以直接计算本质不同的串的个数。
(这里用到一个小优化,把最小的循环节找出来可以简化问题,这样子可以变成循环任意多次,就能用欧拉函数了)
然后就是一顿模板 (POJ2154)
然后交上去
TLE。
SPOJ太慢了
1s跑不过40w的$nsqrt(n)$
然后把2的幂次预处理出来,然后吧逆元线性递推。还是TLE。
然后去看别人的博客,讲了一种奇怪的做法,然而我并没有看懂是什么情况。
也没有任何人讲到。
那看看算法主体中哪些地方还可以优化。
然后怒用调和级数处理因子,然后把vector换成了邻接表,然后A掉了。
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define maxn 1000005
int pri[maxn],top,phi[maxn],vis[maxn];
int pw[maxn<<2],inv[maxn]; #define ll long long
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i) int h[maxn*20],to[maxn*20],ne[maxn*20],en=0; void add(int a,int b)
{
to[en]=b;ne[en]=h[a];h[a]=en++;
} inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void read(int &x){
char c=nc(),b=1;
for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
} int t,a,b,d,c,p=1000003,e; void Shaker()
{
phi[1]=1;
F(i,2,maxn-1)
{
if (!vis[i]) pri[++top]=i,phi[i]=i-1;
for (int j=1;j<=top&&(ll)i*pri[j]<maxn;++j)
{
vis[i*pri[j]]=1;
if (i%pri[j]==0){phi[i*pri[j]]=phi[i]*pri[j];break;}
phi[i*pri[j]]=phi[i]*phi[pri[j]];
}
}
inv[1]=1; F(i,2,maxn-1) inv[i]=(p-(ll)p/i*inv[p%i])%p;
pw[0]=1;
F(i,1,(maxn<<2)-1) pw[i]=pw[i-1]*2%p;
F(i,1,maxn-1)
for (int j=i;j<maxn;j+=i)
add(j,i);
} int ksm(int a,int b)
{
int ret=1;
for (;b;b>>=1,a=(ll)a*a%p) if (b&1) ret=(ll)ret*a%p;
return ret;
} int gcd(int a,int b)
{return b==0?a:gcd(b,a%b);} int main()
{
memset(h,-1,sizeof h);
Shaker();
read(t);
while(t--)
{
int ans=0;
read(a);read(b);
if (a*b==0) {printf("0\n");continue;}
d=gcd(a,b); c=a+b; c=c/d; e=pw[d];
for (register int i=h[c];i>=0;i=ne[i])
ans=(ans+(ll)phi[c/to[i]]*pw[d*to[i]]%p)%p;
ans=(ll)ans*inv[(a+b)/d]%p;
printf("%d\n",((pw[c*d]-ans)%p+p)%p);
}
}
SPOJ 422 Transposing is Even More Fun ——Burnside引理的更多相关文章
- SPOJ 422 Transposing is Even More Fun(polay计数)
题目链接:http://www.spoj.com/problems/TRANSP2/ 题意: 思路:不妨设a=1,b=2, 我们发现(001,010,100)组成一个置换,(011,110,101)组 ...
- 解题:SPOJ 422 Transposing is Even More Fun
题面 这种换来换去的东西很容易想到置换群那一套,然后题目甚至还暗示了二进制=.= 直接换的话显然是$2^{a+b}$次,但是一个循环节里可以少换一次,然后问题就变成了数循环节 在一个循环节里的位置有什 ...
- [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...
- POJ 2888 Magic Bracelet(Burnside引理,矩阵优化)
Magic Bracelet Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 3731 Accepted: 1227 D ...
- BZOJ 1004 Cards(Burnside引理+DP)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1004 题意:三种颜色的扑克牌各有Sr,Sb,Sg张.给出m种置换.两种染色方案在某种置换 ...
- BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...
- [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】
题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...
- BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...
- BZOJ 1004 HNOI2008 Cards Burnside引理
标题效果:特定n张卡m换人,编号寻求等价类 数据保证这m换人加上置换群置换后本身构成 BZOJ坑爹0.0 条件不那么重要出来尼玛怎么做 Burnside引理--昨晚为了做这题硬啃了一晚上白书0.0 都 ...
随机推荐
- jq中append(),appendTo(),after(),before(),prepend(),prependTo()的用法
1. append():往当前元素的内部的后面追加元素; eg:$("div").append($("span")); 将span放在div内部的后面. 2. ...
- java 代码优化
Java程序中的内存管理机制是通过GC完成的,“一个对象创建后被放置在JVM的堆内存中,当永远不在应用这个对象的时候将会被JVM在堆内存中回收.被创建的对象不能再生,同时也没有办法通过程序语句释放”( ...
- JavaScript中的match方法和search方法
search在一个字串对象(string object)中查找关键词字串(规范表达式,regular expression),若匹配(即在目标字串中成功找到关键词)则返回关键词在目标字串中第一次出现的 ...
- BZOJ2118: 墨墨的等式(最短路 数论)
题意 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. So ...
- swpan&expect交互脚本
#!/usr/bin/expectset timeout 30set user USERNAMEset pass PASSWORDspawn sudo pg_dump npi -U admin -p ...
- JZOJ 5849 d
Description Input Output Data Constraint 做法:考虑贪心使得mina*minb最大,先以a为关键字排序,然后枚举删除最小的0~m个ai,对应删除最小的bi,然后 ...
- 面试前赶紧看了5道Python Web面试题,Python面试题No17
目录 本面试题题库,由公号:非本科程序员 整理发布 第1题: Flask中的请求上下文和应用上下文是什么? 第2题:django中间件的使用? 第3题: django开发中数据做过什么优化? 第4题: ...
- 【Isamaru, Hound of Honda】SVN常用命令补遗
一些常用的 就是svn commit的时候 都必须是最新版本的东西 不能不是,但是其实只是.svn在控制,所以可以update到最新版本再svn merge -r 20:10 将版本10和20的融合, ...
- HDU1301 Jungle Roads
Jungle Roads The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign ai ...
- 1250 Fibonacci数列(矩阵乘法快速幂)
1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 定义:f0=f1=1, f ...