C. RMQ with Shifts
C. RMQ with Shifts
In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each query (L, R) (L
R), we report the minimum value among A[L], A[L + 1], ..., A[R]. Note that the indices start from 1, i.e. the left-most element is A[1].
In this problem, the array A is no longer static: we need to support another operation
we do a left ``circular shift" of A[i1], A[i2], ..., A[ik].
For example, if A={6, 2, 4, 8, 5, 1, 4}, then shift(2, 4, 5, 7) yields {6, 8, 4, 5, 4, 1, 2}. After that, shift(1, 2) yields 8, 6, 4, 5, 4, 1, 2.
Input
There will be only one test case, beginning with two integers n, q ( 1
n
100, 000, 1
q
250, 000), the number of integers in array A, and the number of operations. The next line contains n positive integers not greater than 100,000, the initial elements in array A. Each of the next q lines contains an operation. Each operation is formatted as a string having no more than 30 characters, with no space characters inside. All operations are guaranteed to be valid.
Warning: The dataset is large, better to use faster I/O methods.
Output
For each query, print the minimum value (rather than index) in the requested range.
Sample Input
7 5
6 2 4 8 5 1 4
query(3,7)
shift(2,4,5,7)
query(1,4)
shift(1,2)
query(2,2)
Sample Output
1
4
6 解题:RMQ问题,更新比较有新意。。。。。。。。。。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <climits>
#include <algorithm>
#include <cmath>
#define LL long long
using namespace std;
const int maxn = ;
struct node{
int lt,rt,minVal;
}tree[maxn<<];
int d[maxn],u[],cnt;
void build(int lt,int rt,int v){
tree[v].lt = lt;
tree[v].rt = rt;
if(lt == rt){
tree[v].minVal = d[lt];
return;
}
int mid = (lt+rt)>>;
build(lt,mid,v<<);
build(mid+,rt,v<<|);
tree[v].minVal = min(tree[v<<].minVal,tree[v<<|].minVal);
}
int query(int lt,int rt,int v){
if(tree[v].lt == lt && tree[v].rt == rt) return tree[v].minVal;
int mid = (tree[v].lt+tree[v].rt)>>;
if(rt <= mid) return query(lt,rt,v<<);
else if(lt > mid) return query(lt,rt,v<<|);
else return min(query(lt,mid,v<<),query(mid+,rt,v<<|));
}
void update(int lt,int rt,int v){
if(tree[v].lt == tree[v].rt){
tree[v].minVal = d[tree[v].lt];
return;
}
int mid = (tree[v].lt+tree[v].rt)>>;
if(u[rt] <= mid) update(lt,rt,v<<);
else if(u[lt] > mid) update(lt,rt,v<<|);
else{
int i;
for(i = lt; u[i] <= mid; i++);
update(lt,i-,v<<);
update(i,rt,v<<|);
}
tree[v].minVal = min(tree[v<<].minVal,tree[v<<|].minVal);
}
int main(){
int n,m,i,j,len,temp;
char str[];
while(~scanf("%d%d",&n,&m)){
for(i = ; i <= n; i++)
scanf("%d",d+i);
build(,n,);
for(i = ; i < m; i++){
scanf("%s",str);
len = strlen(str);
for(cnt = j = ; j < len;){
if(str[j] < '' || str[j] > '') {j++;continue;}
temp = ;
while(j < len && str[j] >= '' && str[j] <= '') {temp = temp* + (str[j]-'');j++;}
u[cnt++] = temp;
}
if(str[] == 'q'){
printf("%d\n",query(u[],u[],));
}else{
temp = d[u[]];
for(cnt--,j = ; j < cnt; j++)
d[u[j]] = d[u[j+]];
d[u[j]] = temp;
update(,cnt,);
}
}
}
return ;
}
C. RMQ with Shifts的更多相关文章
- UVa 12299 RMQ with Shifts(移位RMQ)
p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: "Times New ...
- TOJ 4325 RMQ with Shifts / 线段树单点更新
RMQ with Shifts 时间限制(普通/Java):1000MS/3000MS 运行内存限制:65536KByte 描述 In the traditional RMQ (Range M ...
- UVa 12299 RMQ with Shifts(线段树)
线段树,没了.. ----------------------------------------------------------------------------------------- # ...
- nyoj 568——RMQ with Shifts——————【线段树单点更新、区间求最值】
RMQ with Shifts 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 In the traditional RMQ (Range Minimum Q ...
- RMQ with Shifts(线段树)
RMQ with Shifts Time Limit:1000MS Memory Limit:65535KB 64bit IO Format:%I64d & %I64u Pra ...
- TZOJ 4325 RMQ with Shifts(线段树查询最小,暴力更新)
描述 In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each que ...
- NYOJ 1012 RMQ with Shifts (线段树)
题目链接 In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each q ...
- 树状数组求最大值 (RMQ with Shifts)
代码: #include <iostream> #include <stdio.h> #include <string.h> #include <stdlib ...
- CSU-1110 RMQ with Shifts (单点更新+区间最小值 zkw线段树)
In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each query ...
随机推荐
- Asp.net开发必备51种代码
1.//弹出对话框.点击转向指定页面 Response.Write("<script>window.alert('该会员没有提交申请,请重新提交!')</script> ...
- mysql 定时任务和存储过程
mysql 定时任务和存储过程 最近在做日志系统,中间用到了 mysql, 其中有一个要求: 把数据库中 7天之后的日志清除了.看到 mysql 也支持 定时任务.于是就用 mysql 来做了.下面就 ...
- 5、两个栈实现队列------------>剑指offer系列
题目 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 思路 栈1: 用于入队列存储 栈2: 出队列时将栈1的数据依次出栈,并入栈到栈2中 栈2出栈即栈1的底部数据 ...
- Smack+OpenFire搭建IM通信,包含心跳和自动重连(Android实现)
Smack是一个开源,易于使用的XMPP(jabber)客户端类库.优点:简单的,功能强大,给用户发送信息只需三行代码便可完成.缺点:API并非为大量并发用户设计,每个客户要1个线程,占用资源大.Op ...
- php关于精准计算的模块 BCMath
Php: BCMath bc是Binary Calculator的缩写.bc*函数的参数都是操作数加上一个可选的 [int scale],比如string bcadd(string $left_ope ...
- MySQL字符集和排序介绍
客服端字符集: character_set_client utf8mb4连接字符集: character_set_connection utf8mb4数据库字符集: character_set_dat ...
- Android学习总结(四)—— Activity和 Service进行通信
一.Activity 和 Service进行通信的基本概念 前面我们学习我生命周期里面包含了启动和停止服务的方法,虽然服务器在活动里启动,但在启动了服务之后,活动与服务基本就没有什么关系了.我们在活动 ...
- 分布式文件系统ceph介绍
ceph哲学思想 1. 每个组件必须支持扩展 2.不存在单点故障 3.解决方案必须是基于软件的.开源的.适应能力强 4.任何可能的一切必须自我管理 存在的意义:帮助企业摆脱昂贵的专属硬件 ceph目标 ...
- BCB:内存泄漏检查工具CodeGuard
一.为什么写这篇东西 自己在使用BCB5写一些程序时需要检查很多东西,例如内存泄漏.资源是否有释放等等,在使用了很多工具后,发觉BCB5本身自带的工具―CodeGuard,非常不错,使用也挺方便的,但 ...
- helm istio k8s docker
helm https://hub.helm.sh/ k8s https://www.kubernetes.org.cn/k8s istio 微服务 https://istio.io/