公钥密码之RSA密码算法大素数判定:Miller-Rabin判定法!

先存档再说,以后实验报告还得打印上交。

Miller-Rabin大素数判定对于学算法的人来讲不是什么难事,主要了解其原理。

先来灌输一下费马小定理:若p为素数,a是正整数且gcd(a,p)=1,则a^(p-1)%p=1。信息安全上俗称同余。本人时常将费马小定理与欧拉定理搞混淆,不过真的很类似。这里既是利用费马小定理来判定素数的。

当然了,费马小定理对于已知素数肯定是适用的,但不免存在一些伪素数也符合这个性质,所以我们需要随机数结合费马小定理来判断。Miller-Rabin算法的基本思想就是这些。

呈上代码:

#include<bits/stdc++.h>
using namespace std;
const int N=20;
bool fast_pow(int a,int b)
{
int ans=1,tmp=b-1;
while(tmp)
{
if(tmp&1) ans=ans*a%b;
a=a*a%b;
tmp>>=1;
}
return ans==1;
}
bool miller_Rabin_check(int n)
{
for(int i=1;i<N;i++)
{
int x=rand()%n;
if(__gcd(x,n)==1)
{
if(!fast_pow(x,n))
return false;
}
}
return true;
}
int main()
{
int n;
while(~scanf("%d",&n))
{
if(n>1&&miller_Rabin_check(n)) puts("check successful!!");
else puts("check failure!!");
}
return 0;
}

公钥密码之RSA密码算法大素数判定:Miller-Rabin判定法!的更多相关文章

  1. 公钥密码之RSA密码算法扩展欧几里德求逆元!!

    扩展欧几里得求逆元 实话说这个算法如果手推的话问题不大,无非就是辗转相除法的逆过程,还有一种就是利用扩展欧几里德算法,学信安数学基础的时候问题不大,但现在几乎都忘了,刷题的时候也是用kuangbin博 ...

  2. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

  3. Pycrypto与RSA密码技术笔记

    密码与通信 密码技术是一门历史悠久的技术.信息传播离不开加密与解密.密码技术的用途主要源于两个方面,加密/解密和签名/验签 在信息传播中,通常有发送者,接受者和窃听者三个角色.假设发送者Master想 ...

  4. Pycrypto与RSA密码技术

    密码与通信      密码技术是一门历史悠久的技术.信息传播离不开加密与解密.密码技术的用途主要源于两个方面,加密/解密和签名/验签.   pip install pycrypto RSA 密码算法与 ...

  5. Miller Rabin算法详解

    何为Miller Rabin算法 首先看一下度娘的解释(如果你懒得读直接跳过就可以反正也没啥乱用:joy:) Miller-Rabin算法是目前主流的基于概率的素数测试算法,在构建密码安全体系中占有重 ...

  6. 重复造轮子之RSA算法(一) 大素数生成

    出于无聊, 打算从头实现一遍RSA算法 第一步, 大素数生成 Java的BigInteger里, 有个现成的方法 public static BigInteger probablePrime(int ...

  7. 记一次使用快速幂与Miller-Rabin的大素数生成算法

    大家都知道RSA的加密的安全性就是能够找到一个合适的大素数,而现在判断大素数的办法有许多,比如Fermat素性测试或者Miller-Rabin素性测试,而这里我用了Miller-Rabin素性测试的算 ...

  8. FZU 1649 Prime number or not米勒拉宾大素数判定方法。

    C - Prime number or not Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  9. algorithm@ 大素数判定和大整数质因数分解

    #include<stdio.h> #include<string.h> #include<stdlib.h> #include<time.h> #in ...

随机推荐

  1. {g2o}Installation Notes:ccmake

    main reference: http://www.cnblogs.com/gaoxiang12/p/3776107.html "注意libqglviewer-qt4-dev只在ubunt ...

  2. strophe.js 插件 XMPP openfire

    参考资料:http://strophe.im/strophejs/ https://github.com/strophe/strophejs-plugins http://amazeui.org/ 最 ...

  3. HDU 4274 Spy's Work (树形DP,模拟)

    题意: 给定一棵树,每个节点代表一个员工,节点编号小的级别就小,那么点1就是boss了.接下来给出对m个点的限制,有3种符号分别是op=“大于/小于/等于”,表示以第i个点为根的子树所有人的工资之和  ...

  4. codevs 2618 核电站问题

    时间限制: 1 s  空间限制: 32000 KB  题目等级 : 黄金 Gold 题目描述 Description 一个核电站有N个放核物质的坑,坑排列在一条直线上.如果连续M个坑中放入核物质,则会 ...

  5. Linux配置临时IP地址

    # ifconfig 查看网卡信息,如下图所示: # ifconfig eth0 192.168.0.107 eth0表示第一块网卡,Linux中所有的设配都是文件,所以eth0是第一块网卡的文件名, ...

  6. 机器学习(1)- 概述&线性回归&逻辑回归&正则化

    根据Andrew Ng在斯坦福的<机器学习>视频做笔记,已经通过李航<统计学习方法>获得的知识不赘述,仅列出提纲. 1 初识机器学习 1.1 监督学习(x,y) 分类(输出y是 ...

  7. 小白安装python软件

    首先下载:anaconda3.x          下载方式:百度搜索 清华镜像anaconda   https://mirrors.tuna.tsinghua.edu.cn/help/anacond ...

  8. 当然,perl等脚本服务器是一般默认安装了,你入侵了一台主机,总不能先装配 Java 环境然后再开干吧?

    转自:https://www.zhihu.com/question/20173592 当然,perl等脚本服务器是一般默认安装了,你入侵了一台主机,总不能先装配 Java 环境然后再开干吧?

  9. Spring-2-官网学习

    spring生命周期回调 结合生命周期机制(官网提供) 1.实现InitializingBean接口重写void afterPropertiesSet() throws Exception;方法 使用 ...

  10. iOS dateformatter设置GMT格式时间--iOS开发系列---项目中成长的知识四

    今天在项目中开始接手客户端的签名这个模块,签名这个会在项目结束过后再单独写一下自己的心得! 今天讲讲在签名的过程中我们需要向服务器传送一个Date值,格式要求是格林威治时间,也就是GMT时间! 格式要 ...