Leetcode总结之Graph
package Graph; import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Set; public class GraphProblem { public static void main(String[] args) {
// TODO Auto-generated method stub }
/*
* 207. Course Schedule
* 2016-3-28 by jyuan
* BFS:典型的拓扑排序。原理也很简单,在一个有向图中,每次找到一个没有前驱节点的节点(也就是入度为0的节点),
* 然后把它指向其他节点的边都去掉,重复这个过程(BFS),直到所有节点已被找到,或者没有符合条件的节点(如果图中有环存在)。。
* DFS的解法,也需要建立有向图,还是用二维数组来建立,和BFS不同的是,我们像现在需要一个一维数组visit来记录访问状态,
* 大体思路是,先建立好有向图,然后从第一个门课开始,找其可构成哪门课,暂时将当前课程标记为已访问,
* 然后对新得到的课程调用DFS递归,直到出现新的课程已经访问过了,则返回false,没有冲突的话返回true,然后把标记为已访问的课程改为未访问
* http://www.jyuan92.com/blog/leetcode-course-schedule/
*/
public boolean canFinishWithBFS(int numCourses, int[][] prerequisites) {
if (null == prerequisites || numCourses == 0 || prerequisites.length == 0) {
return true;
}
int[] preCourses = new int[numCourses];
// store the in-degree #
for (int[] prerequisite : prerequisites) {
preCourses[prerequisite[0]]++;
}
Queue<Integer> queue = new LinkedList<Integer>();
for (int i = 0; i < preCourses.length; i++) {
if (preCourses[i] == 0) {
queue.add(i);
}
}
int numOfPreCourse = 0;
while (!queue.isEmpty()) {
int top = queue.poll();
numOfPreCourse++;
for (int[] prerequisite : prerequisites) {
if (prerequisite[1] == top) {//Find all the neighbor
preCourses[prerequisite[0]]--;
if (preCourses[prerequisite[0]] == 0) {
queue.add(prerequisite[0]);
}
}
}
}
return numOfPreCourse == numCourses;
}
/*
* 210 Course ScheduleII
* 2016-3-28 by jyuan
* http://www.jyuan92.com/blog/leetcode-course-schedule-ii/
*/
public int[] findOrder(int numCourses, int[][] prerequisites) {
int[] res = new int[numCourses];//区别1,多了一个装order的array
int[] preCourses = new int[numCourses];
// store the in-degree #
for (int[] prerequisite : prerequisites) {
preCourses[prerequisite[0]]++;
}
Queue<Integer> queue = new LinkedList<Integer>();
for (int i = 0; i < preCourses.length; i++) {
if (preCourses[i] == 0) {
queue.add(i);
}
}
int numOfPreCourse = 0;
int i = 0;//区别2,多了一个i来遍历res
while (!queue.isEmpty()) {
int top = queue.poll();
res[i++] = top;
numOfPreCourse++;
for (int[] prerequisite : prerequisites) {
if (prerequisite[1] == top) {
preCourses[prerequisite[0]]--;
if (preCourses[prerequisite[0]] == 0) {
queue.add(prerequisite[0]);
}
}
}
}//最后再多一个判断,就是返回是否是需要return新的
if (numOfPreCourse == numCourses) {
return res;
} else {
return new int[0];
}
}
/*
* 下面给出207的DFS方法:
* DFS的思路就简单一点,就是首先构造图的Map,每一个点包含一个list,表明这个点作为这个list
* 每一门课程的前备课程以待后用。那么主体思路就是每一个点为起点做一次dfs,知道底端,
* 如果没有问题就continue,如果有问题直接return false。
* 那么在主体部分,几个状态,如果为-1表示已经访问过肯定return false,如果为1表示这条路
* 已经是通路,已经验证完毕,所有连接这个点的直接return true。
*/
public boolean canFinishWithDFS(int numCourses, int[][] prerequisites) {
if (null == prerequisites || numCourses == 0 || prerequisites.length == 0) {
return true;
}
int[] isVisited = new int[numCourses];
Map<Integer, ArrayList<Integer>> map = new HashMap<Integer, ArrayList<Integer>>();
for (int[] prerequisite : prerequisites) {
if (!map.containsKey(prerequisite[1])) {
map.put(prerequisite[1], new ArrayList<Integer>());
}
map.get(prerequisite[1]).add(prerequisite[0]);
}
for (int i = 0; i < numCourses; i++) {
if (!dfs(isVisited, map, i)) {
return false;
}
}
return true;
}
private boolean dfs(int[] isVisited, Map<Integer, ArrayList<Integer>> map, int index) {
if (isVisited[index] == -1) {
return false;
}
if (isVisited[index] == 1) {
return true;
}
isVisited[index] = -1;//假如最后一个点进来,先赋值-1,然后没有map的值,所以直接为1,以后所有遇到这个点的都是通路
if (map.containsKey(index)) {
for (int value : map.get(index)) {
if (!dfs(isVisited, map, value)) {
return false;
}
}
}
isVisited[index] = 1;
return true;
}
/*
* 下面给出210的DFS方法:
*/
int i;//区别1全局变量i
public int[] findOrderWithDFS(int numCourses, int[][] prerequisites) {
i = numCourses - 1;
int[] res = new int[numCourses];
int[] isVisited = new int[numCourses];
Map<Integer, ArrayList<Integer>> map = new HashMap<Integer, ArrayList<Integer>>();
for (int[] prerequisite : prerequisites) {
if (!map.containsKey(prerequisite[1])) {
map.put(prerequisite[1], new ArrayList<Integer>());
}
map.get(prerequisite[1]).add(prerequisite[0]);
}
for (int i = 0; i < numCourses; i++) {
if (!dfs(map, isVisited, res, i)) {
return new int[0];
}
}
return res;
}
private boolean dfs(Map<Integer, ArrayList<Integer>> map, int[] isVisited, int[] res, int index) {
if (isVisited[index] == -1) {
return false;
}
if (isVisited[index] == 1) {
return true;
}
isVisited[index] = -1;
if (map.containsKey(index)) {
for (int value : map.get(index)) {
if (!dfs(map, isVisited, res, value)) {
return false;
}
}
}
res[i--] = index;
isVisited[index] = 1;
return true;
}
/*
* 261.Graph Valid Tree
* 2016-3-29 by Buttercola
* 和上面的BFS方法一样,不过这里是无向图,所以需要两个点都要存对方
* 图要形成树必须有两个方面,一个是没有cycle另一个是没有孤立的点
* Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes),
* write a function to check whether these edges make up a valid tree.
* Given n = 5 and edges = [[0, 1], [0, 2], [0, 3], [1, 4]], return true.
* Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], return false.
*/
private boolean valid(int n, int[][] edges) {
// build the graph using adjacent list
List<Set<Integer>> graph = new ArrayList<Set<Integer>>();
for(int i = 0; i < n; i++)
graph.add(new HashSet<Integer>());
for(int[] edge : edges) {
graph.get(edge[0]).add(edge[1]);
graph.get(edge[1]).add(edge[0]);
}
// no cycle
boolean[] visited = new boolean[n];
Queue<Integer> queue = new LinkedList<Integer>();
queue.add(0);
while(!queue.isEmpty()) {
int node = queue.poll();
if(visited[node])
return false;
visited[node] = true;
for(int neighbor : graph.get(node)) {
queue.offer(neighbor);
graph.get(neighbor).remove((Integer)node);
}
}
// fully connected
for(boolean result : visited){
if(!result)
return false;
}
return true;
}
/*
* 310. Minimum Height Trees
* 2016-3-29 by Mingyang
* 同样的方法构建无向图
* 这里运用的一个层层剥丝的方式,一层一层的来,去掉不要的
*/
public List<Integer> findMinHeightTrees(int n, int[][] edges) {
if (n == 1) return Collections.singletonList(0);
List<Set<Integer>> adj = new ArrayList<Set<Integer>>(n);
for (int i = 0; i < n; ++i) adj.add(new HashSet<Integer>());
for (int[] edge : edges) {
adj.get(edge[0]).add(edge[1]);
adj.get(edge[1]).add(edge[0]);
}
List<Integer> leaves = new ArrayList<Integer>();
for (int i = 0; i < n; ++i)
if (adj.get(i).size() == 1) leaves.add(i);
while (n > 2) {
n -= leaves.size();
List<Integer> newLeaves = new ArrayList<Integer>();
for (int i : leaves) {
int j = adj.get(i).iterator().next();
adj.get(j).remove(i);
if (adj.get(j).size() == 1) newLeaves.add(j);
}
leaves = newLeaves;
}
return leaves;
}
/*
* 332. Reconstruct Itinerary
* 2016-3-14 by Mingyang
* 这道题给我们一堆飞机票,让我们建立一个行程单,如果有多种方法,取其中字母顺序小的那种方法。
* 这道题的本质是有向图的遍历问题,那么LeetCode关于有向图的题只有两道Course Schedule和Course Schedule II,
* 而那两道是关于有向图的顶点的遍历的,而本题是关于有向图的边的遍历。
* 每张机票都是有向图的一条边,我们需要找出一条经过所有边的路径,那么DFS不是我们的不二选择。
* 代码前半段都在准备工作。把所有的tickets全部装进一个map,string对应了一个priority queue
* 后半段dfs中,找出第一个顺序的结果。最终输出是从最后一个开始,一个一个往前退的情况下addFirst加起来的
*/
HashMap<String, PriorityQueue<String>> map = new HashMap<String, PriorityQueue<String>>();
LinkedList<String> result = new LinkedList<String>();
public List<String> findItinerary(String[][] tickets) {
for (String[] ticket : tickets) {
if (!map.containsKey(ticket[0])) {
PriorityQueue<String> q = new PriorityQueue<String>();
map.put(ticket[0], q);
}
map.get(ticket[0]).offer(ticket[1]);
}
dfs("JFK");
return result;
}
public void dfs(String s) {
PriorityQueue<String> q = map.get(s);
while (q != null && !q.isEmpty()) {
dfs(q.poll());
}
result.addFirst(s);
}
/*
* 323 Number of Connected Components in an Undirected Graph
* 2016-4-2 by Mingyang
* Given n nodes labeled from 0 to n - 1 and
* a list of undirected edges (each edge is a pair of nodes),
* write a function to find the number of connected components in an undirected graph.
* You can assume that no duplicate edges will appear in edges.
* Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
*/
public int countComponents(int n, int[][] edges) {
if (n <= 1) {
return n;
}
List<List<Integer>> adjList = new ArrayList<List<Integer>>();
for (int i = 0; i < n; i++) {
adjList.add(new ArrayList<Integer>());
}
for (int[] edge : edges) {
adjList.get(edge[0]).add(edge[1]);
adjList.get(edge[1]).add(edge[0]);
}
boolean[] visited = new boolean[n];
int count = 0;
for (int i = 0; i < n; i++) {
if (!visited[i]) {
count++;
dfs(visited, i, adjList);
}
}
return count;
}
public void dfs(boolean[] visited, int index, List<List<Integer>> adjList) {
visited[index] = true;
for (int i : adjList.get(index)) {
if (!visited[i]) {
dfs(visited, i, adjList);
}
}
}
}
Leetcode总结之Graph的更多相关文章
- [Leetcode Week3]Clone Graph
Clone Graph题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/clone-graph/description/ Description Clon ...
- [LeetCode] 785. Is Graph Bipartite? 是二分图么?
Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...
- LeetCode 785. Is Graph Bipartite?
原题链接在这里:https://leetcode.com/problems/is-graph-bipartite/ 题目: Given an undirected graph, return true ...
- [LeetCode] 133. Clone Graph 克隆无向图
Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...
- leetcode 133. Clone Graph ----- java
Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...
- 【leetcode】Clone Graph(python)
类似于二叉树的三种遍历,我们能够基于遍历的模板做非常多额外的事情,图的两种遍历,深度和广度模板相同也能够做非常多额外的事情,这里举例利用深度优先遍历的模板来进行复制,深度优先中,我们先訪问第一个结点, ...
- [LeetCode] 785. Is Graph Bipartite?_Medium tag: DFS, BFS
Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...
- [leetcode]785. Is Graph Bipartite? [bai'pɑrtait] 判断二分图
Given an undirected graph, return true if and only if it is bipartite. Example 1: Input: [[1,3], [0, ...
- Java for LeetCode 133 Clone Graph
Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...
随机推荐
- LeetCode(123) Best Time to Buy and Sell Stock III
题目 Say you have an array for which the ith element is the price of a given stock on day i. Design an ...
- POJ 3057 网络流 Evacuation
题意: 有一个n×m的房间,四周每个格子要么是墙要么是门.中间部分是墙或者人. 现在所有人要从房间逃出去,每个人的速度为1,也就是每个单位时间只能向上下左右四个方向走一格. 多个人可以站在同一个格子上 ...
- 实现类似QQ单一账户登录,在另一个地方登录后在原登录窗口提示下线
首先,使用框架做的最好,可以在框架页直接做一次就好了 再登陆成功后保存session的代码后添加以下代码: 注意:需要引入命名空间using System.Collections; SetApplic ...
- 如何在官网下载Spring jar包
该链接里面讲的很仔细! http://blog.csdn.net/frankarmstrong/article/details/69808813
- python 查看异常
接触python 一直觉着编译后报错经常没能捕捉显示,每次也只能从头看到尾 恰好在水木社区中看到关于异常捕捉帖子 方法一:捕获所有异常 try: a=b b=c except Exception,ex ...
- how can I ues Dataset to shuffle a large whole dataset?
The Dataset.shuffle() implementation is designed for data that could be shuffled in memory; we're co ...
- 【Luogu】P2254瑰丽华尔兹(堆优化DP)
题目链接 我也不知道为什么脑子一抽就想了个堆优化……然后贼慢…… 因为上午听不懂wys的电音专场(快速傅立叶变换),然后就做了这么一道题. 首先朴素DP很sb都能秒出.就是枚举时刻.位置(两维)然后转 ...
- ACM程序设计选修课——1057: Beautiful Garden(模拟+耐心调试)
1057: Beautiful Garden Time Limit: 5 Sec Memory Limit: 128 MB Submit: 25 Solved: 12 [Submit][Statu ...
- P2622 关灯问题II (状态压缩,最短路)
题目链接 Solution 这道题算是很经典的状压问题了,好题. 考虑到 \(n\) 的范围仅为 \(10\) , 那么也就是说所有状态压起来也只有 \(1024\) 种情况. 然后我们发现 \(m\ ...
- [SCOI2008]配对 (贪心,动态规划)
题目链接 Solution 很妙的DP,很妙的贪心. 首先考虑,如果说没有那个相同的不能配对的情况; 那么我们肯定是直接排两遍序,然后一一对应即可. 但是是有限制的,同时我们可得几个条件供贪心: 每个 ...