将一个排列映射到一个数的方法就叫做康托展开。它的具体做法是这样的,对于一个给定的排列{ai}(i=1,2,3...n),对于每个ai求有多少个aj,使得j>i且ai>aj,简单来说就是求ai后面有多少数比ai小,假设我们求出来了这样的排列的一个对应数组{bi},其中bi就是ai后面有多少个数比它小。那么这个排列对应的康托展开即为∑bi*(n-i)!.

ai={1 3 5 4 2}

bi={0 1 2 1 0} 对应的排列数  0*4!+1*3!+2*2!+1*1!+0*0!.

bi可以通过树状数组在O(nlogn)里得到。

至于逆康托展开,就是已知bi,反求出ai,即知道了{0 1 2 1 0}.

做法也是类似的,我们看第一个数是0,表示后面有0个比它小的数,那么它必然是1.然后看第二个数是1,表示这个数在除去1 后面有1个比它小的数,那么这个数就是3,然后2,表示这个数后面在除去1,3,之后有2个比它小的数,所以它是5,以此往下。

一个O(nlogn)的想法是这样的,建立一棵平衡树,把1~n都插进去,每次查找第(bi+1)大的数,即为第i个数,然后把这个数删掉,以此往复。

但手写一个支持找第k大的平衡树比较慢,另外一个想法是在bit里把每个数都置1,然后二分出第一个使得前缀和为bi+1的数,这样做的复杂度就变成了O(nlog^2n).

#pragma warning(disable:4996)
#include <iostream>
#include <cstring>
#include <string>
#include <vector>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; #define maxn 210000 int bit[maxn];
int n; void upd(int i)
{
while (i <= n){
bit[i] += 1;
i += i&(-i);
}
} void dec(int i)
{
while (i <= n){
bit[i] -= 1;
i += i&(-i);
}
} int cal(int i)
{
int ret = 0;
while (i > 0){
ret += bit[i];
i -= i&(-i);
}
return ret;
} int solve(int x)
{
int l = 1, r = n+1;
while (l < r)
{
int mid = (l + r) >> 1;
int tx = cal(mid);
if (tx < x) l = mid + 1;
else r = mid;
}
return l;
} int a[maxn];
int b[maxn];
int c[maxn];
int va[maxn];
int vb[maxn];
int vc[maxn]; int main()
{
while (cin >> n)
{
for (int i = 0; i < n; ++i){
scanf("%d", a + i); a[i]++;
}
for (int i = 0; i < n; ++i){
scanf("%d", b + i); b[i]++;
}
memset(bit, 0, sizeof(bit));
for (int i = n - 1; i >= 0; --i){
va[i] = cal(a[i]);
upd(a[i]);
}
memset(bit, 0, sizeof(bit));
for (int i = n - 1; i >= 0; --i){
vb[i] = cal(b[i]);
upd(b[i]);
}
reverse(va, va + n);
reverse(vb, vb + n);
memset(vc, 0, sizeof(vc));
int carry = 0;
for (int i = 1; i < n; ++i){
vc[i] = (carry + va[i] + vb[i]) % (i + 1);
carry = (carry + va[i] + vb[i]) / (i + 1);
}
reverse(vc, vc + n);
memset(bit, 0, sizeof(bit));
for (int i = 1; i <= n; ++i){
upd(i);
}
for (int i = 0; i < n; ++i){
c[i] = solve(vc[i]+1);
dec(c[i]);
}
for (int i = 0; i < n; ++i){
if (i) printf(" ");
printf("%d", c[i]-1);
}
puts("");
}
return 0;
}

CF501D Misha and Permutations Summation(康托展开)的更多相关文章

  1. Codeforces Round #285 (Div. 1) B - Misha and Permutations Summation 康拓展开+平衡树

    思路:很裸的康拓展开.. 我的平衡树居然跑的比树状数组+二分还慢.. #include<bits/stdc++.h> #define LL long long #define fi fir ...

  2. Misha and Permutations Summation

    A - Misha and Permutations Summation 首先这个 mod n! 因为数量级上的差别最多只会对康拓展开的第一项起作用所以这个题并不需要把 ord (p) 和 ord ( ...

  3. [Codeforces 501D] - Misha and Permutations Summation

    题意是给你两个长度为$n$的排列,他们分别是$n$的第$a$个和第$b$个全排列.输出$n$的第$\left(a+b \right)\textrm{mod} \, n!$个全排列. 一种很容易的想法是 ...

  4. 【codeforces 501D】Misha and Permutations Summation

    [题目链接]:http://codeforces.com/problemset/problem/501/D [题意] 给你两个排列; 求出它们的字典序num1和num2; 然后让你求出第(num1+n ...

  5. Codeforces Round #285 (Div.1 B & Div.2 D) Misha and Permutations Summation --二分+树状数组

    题意:给出两个排列,求出每个排列在全排列的排行,相加,模上n!(全排列个数)得出一个数k,求出排行为k的排列. 解法:首先要得出定位方法,即知道某个排列是第几个排列.比如 (0, 1, 2), (0, ...

  6. 用康托展开实现全排列(STL、itertools)

    康拓展开: $X=a_n*(n-1)!+a_{n-1}*(n-2)!+\ldots +a_2*1!+a_1*0!$ X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+ ...

  7. leetcode 60. Permutation Sequence(康托展开)

    描述: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of t ...

  8. 【BZOJ】3301: [USACO2011 Feb] Cow Line(康托展开)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3301 其实这一题很早就a过了,但是那时候看题解写完也是似懂非懂的.... 听zyf神犇说是康托展开, ...

  9. UVA11525 Permutation[康托展开 树状数组求第k小值]

    UVA - 11525 Permutation 题意:输出1~n的所有排列,字典序大小第∑k1Si∗(K−i)!个 学了好多知识 1.康托展开 X=a[n]*(n-1)!+a[n-1]*(n-2)!+ ...

随机推荐

  1. python PEP8代码规范及问题

    最近刚刚接触Python,为了养成好习惯,尽量保证自己写的代码符合PEP8代码规范,下面是过程中报出的警告及解决方法,英文有些翻译不太准确见谅,会不断更新: PEP 8: module level i ...

  2. Codeforces Round #461 (Div. 2) D. Robot Vacuum Cleaner

    D. Robot Vacuum Cleaner time limit per test 1 second memory limit per test 256 megabytes Problem Des ...

  3. LOJ #6010. 「网络流 24 题」数字梯形

    #6010. 「网络流 24 题」数字梯形   题目描述 给定一个由 n nn 行数字组成的数字梯形如下图所示.梯形的第一行有 m mm 个数字.从梯形的顶部的 m mm 个数字开始,在每个数字处可以 ...

  4. js武器库

    打造自己的 JavaScript 武器库 2017-12-14 SlaneYang JavaScript 自己打造一把趁手的武器,高效率完成前端业务代码. 前言 作为战斗在业务一线的前端,要想少加班, ...

  5. 【读书笔记--cookie】JavaScript权威指南 第六版

    遇到一些问题需要用cookie处理,正好读了一下犀牛书关于cookie的介绍,整理了一些笔记. cookie是指web浏览器存储的少量数据,同时它是与具体的web页面或者站点相关的. cookie数据 ...

  6. leetcode 【 Minimum Path Sum 】python 实现

    题目: Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right w ...

  7. jmeter配置分布式调度:远程启动其他机器实现多台pc一起并发

    原文转自:https://www.cnblogs.com/whitewasher/p/6946207.html Jmeter分布式部署测试-----远程连接多台电脑做压力性能测试 在使用Jmeter进 ...

  8. Python+Selenium练习篇之8-利用css定位元素

    前面介绍了,XPath, id , class , link text, partial link text, tag name, name 七大元素定位方法,本文介绍webdriver支持的最后一个 ...

  9. CMD 下运行python的unittest测试脚本无输出

    正常情况下windows的命令行执行python脚本命令: python 脚本名.py 我这样做了,看截图可以看到,并没有期待中那样有一堆高大上的信息输出,反而毛都没有!!!! 于是,我想起了度娘,但 ...

  10. vmware安装centos7 安装redis windows7访问redis

    1.在windows7中安装vmware 2.在vmware中安装centos7 3.禁用centos7自带的firewalld.service 4.安装iptables防火墙 5.安装Redis 3 ...