IP首部之首部校验和
首先介绍一下1的补码,2的补码:(摘自http://blog.csdn.net/cradmin/article/details/3092559)
过1的补码,2的补码,到网上搜了下找到这个:
It is the 1’s complement of the 1’s complement sum of all the 16-bit words in the TCP header and data 这是关于TCP头部校验和字段(checksum field)的说明。
补码:补码是计算机中二进制数表达负数的办法,这样可以在计算机中把两个数的减法变成加法。补码形式有1的补码和2的补码,其中1的补码用在IP、TCP的校验和中;
The checksum algorithm is simply to add up all the 16-bit words in one's complement and then to take the one's complement of the sum.
1's Complement Arithmetic
The Formula
~N = (2^n -1) - N
where: n is the number of bits per word
N is a positive integer
~N is -N in 1's complement notation
For example with an 8-bit word and N = 6, we have:
~N = (2^8 -1) - 6 = 255 - 6 = 249 = 11111001
In Binary
An alternate way to find the 1's complement is to simply
take the bit by bit complement of the binary number.
For example: N = +6 = 00000110
N = -6 = 11111001
Conversely, given the 1's complement we can find the
magnitude of the number by taking it's 1's complement.
The largest number that can be represented in 8-bit 1's
complement is 01111111 = 127 = 0x7F. The smallest is
10000000 = -127. Note that the values 00000000 and
11111111 both represent zero.
Addition
End-around Carry. When the addition of two values
results in a carry, the carry bit is added to the sum in the
rightmost position. There is no overflow as long as the
magnitude of the result is not greater than 2^n-1.
2's Complement Arithmetic
The Formula
N* = 2^n - N
where: n is the number of bits per word
N is a positive integer
N* is -N in 2's complement notation
For example with an 8-bit word and N = 6, we have:
N* = 2^8 - 6 = 256 - 6 = 250 = 11111010
In Binary
An alternate way to find the 2's complement is to start at
the right and complement each bit to the left of the first
"1".
For example: N = +6 = 00000110
N* = -6 = 11111010
Conversely, given the 2's complement we can find the
magnitude of the number by taking it's 2's complement.
The largest number that can be represented in 8-bit 2s
complement is 01111111 = 127. The smallest is
10000000 = -128.
Addition
When the addition of two values results in a carry, the
carry bit is ignored. There is no overflow as long as the
is not greater than 2^n-1 nor less than -2^n.
我们之前学的是2的补码:正数补码是自己,负数补码=反码+1
而1的补码:正数补码是自己,负数的补码=各位取反(也就是反码)
IP/TCP首部校验规则:(摘自:http://www.cnblogs.com/fhefh/archive/2011/10/18/2216885.html,这篇讲解非常棒,有例子)
P/ICMP/IGMP/TCP/UDP等协议的校验和算法都是相同的,算法如下:
在发送数据时,为了计算数IP据报的校验和。应该按如下步骤:(1)把IP数据报的首部都置为0,包括校验和字段。(2)把首部看成以16位为单位的数字组成,依次进行二进制反码求和。(3)把得到的结果存入校验和字段中。在接收数据时,计算数据报的校验和相对简单,按如下步骤:(1)当接收IP包时,需要对报头进行确认,检查IP头是否有误,算法同上2、3步,然后判断取反的结果是否为0,是则正确,否则有错。1、发送方 i)将校验和字段置为0,然后将IP包头按16比特分成多个单元,如包头长度不是16比特的倍数,则用0比特填充到16比特的倍数; ii)对各个单元采用反码加法运算(即高位溢出位会加到低位,通常的补码运算是直接丢掉溢出的高位),将得到的和的反码填入校验和字段; iii)发送数据包。2、接收方 i)将IP包头按16比特分成多个单元,如包头长度不是16比特的倍数,则用0比特填充到16比特的倍数; ii)对各个单元采用反码加法运算,检查得到的和是否符合是全1(有的实现可能对得到的和会取反码,然后判断最终值是不是全0);iii)如果是全1则进行下步处理,否则意味着包已变化从而丢弃之。需要强调的是反码和是采用高位溢出加到低位的,如3比特的反码和运算:100b+101b=010b(因为100b+101b=1001b,高位溢出1,其应该加到低位,即001b+1b(高位溢出位)=010b)程序:
unsigned short checksum(unsigned short *buf, int nword)
{
// short是16位(俩字节),即把报表首部按16bit分开
// 先求和
unsigned long sum = ;
for(int i=; i<nword; i++)
{
sum += *buf++;
}
//高位溢出加到低位
sum = (sum >> ) + (sum & 0xffff);
//防止上次操作引起的新溢出
sum += (sum >> );
//long(32 bit) 截取低位部分转换为short(16位)
return (unsigned short)~sum;
}
IP首部之首部校验和的更多相关文章
- IP数据包的校验和算法
1.算法思路: IP/ICMP/IGMP/TCP/UDP等协议的校验和算法都是相同的,算法如下: 在发送数据时,为了计算IP数据包的校验和.应该按如下步骤: (1)把IP数据包的校验和字段置为0: ( ...
- HTTP协议图--HTTP 报文首部之首部字段(重点分析)
1.首部字段概述 先来回顾一下首部字段在报文的位置,HTTP 报文包含报文首部和报文主体,报文首部包含请求行(或状态行)和首部字段. 在报文众多的字段当中,HTTP 首部字段包含的信息最为丰富.首部字 ...
- [TCP/IP] 网络层-抓包分析IP数据包首部
ip数据包的结构:首部+数据部分 1.版本(v4或者v6)+首部长度(固定的20字节,所以就没有)+区分服务优先级(我的例子是 assured forwarding 31 0x1a 26,保证转发) ...
- TCP/IP UDP 协议首部及数据进入协议栈封装的过程
数据的封装 UDP 封装 TCP 封装 IP 封装 检验和算法 当应用程序用TCP传送数据时,数据被传送入协议栈中,然后逐一通过每一层直到被当作一串比特流送入网络 注: UDP数据TCP数据基本一致. ...
- WireShark开启IP, TCP,UDP校验和的办法
首先点击编辑->首选项
- IP数据报首部校验和算法
当用google搜索IP数据报首部校验和算法的时候,总是看到的是代码,没有看到其过程,于是就有了此文,如有错误请指正.文章省略一点,呵呵 IP/ICMP/IGMP/TCP/UDP等协议的校验和算法 ...
- IP 首部检验和算法
原创博文,转载请注明出处. 在学习TCP/IP 详解的过程中遇到了不止一次的关于检验和的概念,在吸取了他人理解的前提下,我决定用Wireshark 进行抓包分析. 首先我们得知道IP数据包格式 首先把 ...
- 理解传输层中UDP协议首部校验和以及校验和计算方法的Java实现
UDP,全称User Datagram Protocol,用户数据报协议,是TCP/IP四层参考模型中传输层的一种面向报文的.无连接的.不能保证可靠的.无拥塞控制的协议.UDP协议因为传输效率高,常用 ...
- TCP/IP协议栈--IP首部选项字段的分析
IP输入函数(ipintr)将在验证分组格式(检验和,长度等)之后.确定分组是否到达目的地之前,对选项进行处理. 这表明分组所 遇到的每一个路由器以及终于的目的主机都对要分组的选项进行处理. IP分组 ...
随机推荐
- python资源大全2
原文链接 网络 Scapy, Scapy3k: 发送,嗅探,分析和伪造网络数据包.可用作交互式包处理程序或单独作为一个库. pypcap, Pcapy, pylibpcap: 几个不同 libpcap ...
- P2255 [USACO14JAN]记录奥林比克Recording the M…
P2255 [USACO14JAN]记录奥林比克Recording the M… 题目描述 Being a fan of all cold-weather sports (especially tho ...
- Django之session验证的三种姿势
一.什么是session session是保存在服务端的键值对,Django默认支持Session,并且默认是将Session数据存储在数据库中,即:django_session 表中. 二.FVB中 ...
- OpenStack之Glance源码简析
Glance简介 OpenStack镜像服务器是一套虚拟机镜像发现.注册.检索. glance架构图: Glance源码结构: glance/api:主要负责接收响应镜像管理命令的Restful请求, ...
- python 类中__init__,__new__,__class__的使用详解
1.python中所有类默认继承object类,而object类提供了很多原始的内置属性和方法,所有用户定义的类在python 中也会继承这些内置属性.我们可以通过dir()进行查看.虽然python ...
- 整理 pycharm console调试博客
在Debug模式下,查看变量发现只能看到300个变量,报错: two large to show contents. Max items to show:300. 点击Debugger左侧consol ...
- 体验devstack安装openstack
由于公司制度,工作环境是不能直接上网的,所以在工作时间从没有体验过devstack或者其他联网方式安装openstack. 因自己购置了一台不错的主机,因而决定尝试安装一番,经过一段为期不短的内心极度 ...
- (转)iOS-蓝牙学习资源博文收集
ios蓝牙开发(一)蓝牙相关基础知识 ios蓝牙开发(二)蓝牙中心模式的ios代码实现 ios蓝牙开发(三)app作为外设被连接的实现 ios蓝牙开发(四)BabyBluetooth蓝牙库介绍 暂未完 ...
- POJ 1222 EXTENDED LIGHTS OUT(高斯消元解异或方程组)
EXTENDED LIGHTS OUT Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 10835 Accepted: 6 ...
- Python之文件操作:文件的读写
一.open函数:对文件读写之前,需要先打开文件,获取文件句柄 注意:open() file() 尽量使用open(),Python3以后不支持file()了 1.open(file_name[,ac ...