poj3181【Dollar Dayz】
**
做完这道题,心里五味陈杂,明明是最水的一道题,我却做了最长的时间。
题意是求用1~k的和表示n的方案数。
显然是个计数dp,但我不会。思考半小时未果。
然后找尹鹏哲,他给我讲了个错的dp方程,结果调试半小时未果,看了别人的代码,发现别人虽然滚了一维,但和尹鹏哲讲的十分相似。
后来我又想了想,觉得尹鹏哲的dp方程有点问题,自己改了一下,但当时并没有验证。实际上,由于对题解方程错误理解,当时我已经形成了思维定势,认为方程是对的,却没有发现方程中一个十分微小但十分致命的错误——我把完全背包和01背包的模型搞混了。正是这个错误,让我调+改又浪费了两个小时。
好了,废话说了这么多,只是想让自己记住这次教训,希望下次不要再犯。(但背包问题的模型又多,变化又复杂,所以只能希望了),下面写题解。
先讲二维的:
设f[i][j]表示用前i个物品,刚好凑出体积j的方案数。这个状态很好想。
然后是转移,就是在这里我的思维出现了偏差。
开始,尹鹏哲告诉我的是f[i][j]+=f[i-1][j-i],这个与一维方程一模一样,显然是不对的,但我太信任尹鹏哲,所以并没有细想。
后来,受尹鹏哲的启发,我自己写出来的方程是f[i][j]=f[i-1][j-i]+f[i-1][j],与组合数的递推关系一样,表示第i件物品选与不选。
这个方程咋看上去没问题,实际上,这道题与组合数有着本质的区别,组合数每个物品只能选一次,而这道题一个数字显然可以用多次。但傻逼的我忽视了这个差别,结果狂WA不止。
换成背包问题的计数的话,组合数实际上是01背包的方案数,而这道题实际上是完全背包的方案数!
所以,dp方程应该为:f[i][j]=f[i][j-i]+f[i-1][j]
滚成一维就很简单了:f[j]+=f[j-i]
实际上,完全背包和01背包的代码十分相似,若碰到一定要想清楚!
另:要打高精度,详见一维代码。**
二维:
#include <bits/stdc++.h>
using namespace std;
#define db double
#define ll long long
#define RG register
inline int gi()
{
RG int ret; RG bool flag; RG char ch;
ret=0, flag=true, ch=getchar();
while (ch < '0' || ch > '9')
ch == '-' ? flag=false : 0, ch=getchar();
while (ch >= '0' && ch <= '9')
ret=(ret<<3)+(ret<<1)+ch-'0', ch=getchar();
return flag ? ret : -ret;
}
const db pi = acos(-1.0);
const int N = 142857, inf = 1<<30;
int f[205][2005];
int main()
{
freopen("Dollar_Dayz.in","r",stdin);
freopen("Dollar_Dayz.out","w",stdout);
int n,m,i,j;
n=gi(), m=gi();
f[1][0]=1;
// 两种都可
// for (i=1; i<=m; ++i)
// for (j=0; j<=n; ++j)
// {
// if (j >= i)
// f[i][j]=f[i][j-i];
// f[i][j]+=f[i-1][j];
// }
for (i=1; i<=m; ++i)
for (j=0; j<=n; ++j)
f[i][j+i]+=f[i][j], f[i+1][j]=f[i][j];
printf("%d\n",f[m][n]);
return 0;
}
一维:
#include <bits/stdc++.h>
using namespace std;
#define db double
#define ll long long
#define RG register
inline int gi()
{
RG int ret; RG bool flag; RG char ch;
ret=0, flag=true, ch=getchar();
while (ch < '0' || ch > '9')
ch == '-' ? flag=false : 0, ch=getchar();
while (ch >= '0' && ch <= '9')
ret=(ret<<3)+(ret<<1)+ch-'0', ch=getchar();
return flag ? ret : -ret;
}
const db pi = acos(-1.0);
const int N = 1e3+5, inf = 1<<30;
const ll lim = 1e18; //要开 ll
ll f[N],g[N];
int main()
{
freopen("Dollar_Dayz.in","r",stdin);
freopen("std.out","w",stdout);
int n,m,i,j;
n=gi(), m=gi();
g[0]=1;
for (j=1; j<=m; ++j)
for (i=j; i<=n; ++i)
{
f[i]+=f[i-j], g[i]+=g[i-j];
if (g[i] >= lim)
f[i]+=g[i]/lim, g[i]%=lim;
}
if (f[n])
printf("%lld%lld\n",f[n],g[n]);
else
printf("%lld\n",g[n]);
return 0;
}
poj3181【Dollar Dayz】的更多相关文章
- 【AR实验室】mulberryAR : ORBSLAM2+VVSION
本文转载请注明出处 —— polobymulberry-博客园 0x00 - 前言 mulberryAR是我业余时间弄的一个AR引擎,目前主要支持单目视觉SLAM+3D渲染,并且支持iOS端,但是该引 ...
- 【.net 深呼吸】细说CodeDom(1):结构大观
CodeDom 是啥东东?Html Dom听过吧,XML Dom听过吧.DOM一般可翻译为 文档对象模型,那 Code + DOM呢,自然是指代码文档模型了.如果你从来没接触过 CodeDom,你大概 ...
- 【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- 【前端性能】高性能滚动 scroll 及页面渲染优化
最近在研究页面渲染及web动画的性能问题,以及拜读<CSS SECRET>(CSS揭秘)这本大作. 本文主要想谈谈页面优化之滚动优化. 主要内容包括了为何需要优化滚动事件,滚动与页面渲染的 ...
- 【深入浅出jQuery】源码浅析--整体架构
最近一直在研读 jQuery 源码,初看源码一头雾水毫无头绪,真正静下心来细看写的真是精妙,让你感叹代码之美. 其结构明晰,高内聚.低耦合,兼具优秀的性能与便利的扩展性,在浏览器的兼容性(功能缺陷.渐 ...
- 【.net 深呼吸】程序集的热更新
当一个程序集被加载使用的时候,出于数据的完整性和安全性考虑,程序集文件(在99.9998%的情况下是.dll文件)会被锁定,如果此时你想更新程序集(实际上是替换dll文件),是不可以操作的,这时你得把 ...
- 【.net 深呼吸】跨应用程序域执行程序集
应用程序域,你在网上可以查到它的定义,凡是概念性的东西,大伙儿只需要会搜索就行,内容看了就罢,不用去记忆,更不用去背,“名词解释”是大学考试里面最无聊最没水平的题型. 简单地说,应用程序域让你可以在一 ...
- 【Web动画】SVG 实现复杂线条动画
在上一篇文章中,我们初步实现了一些利用基本图形就能完成的线条动画: [Web动画]SVG 线条动画入门 当然,事物都是朝着熵增焓减的方向发展的,复杂线条也肯定比有序线条要多. 很多时候,我们无法人工去 ...
- 【Web动画】SVG 线条动画入门
通常我们说的 Web 动画,包含了三大类. CSS3 动画 javascript 动画(canvas) html 动画(SVG) 个人认为 3 种动画各有优劣,实际应用中根据掌握情况作出取舍,本文讨论 ...
随机推荐
- 作为一个新人,怎样学习嵌入式Linux?
作为一个新人,怎样学习嵌入式Linux? 在学习嵌入式Linux之前,肯定要有C语言基础.汇编基础有没有无所谓(就那么几条汇编指令,用到了一看就会).尝试着写一些C语言竞赛的题目.它们是纯 ...
- 利用NSString的Hash方法比较字符串
实际编程总会涉及到比较两个字符串的内容,一般会用 [string1 isEqualsToString:string2] 来比较两个字符串是否一致.对于字符串的isEqualsToString方法,需要 ...
- 一道简单DP题
问题: 给定一个整数的数组,相邻的数不能同时选,求从该数组选取若干整数,使得他们的和最大,要求只能使用o(1)的空间复杂度.要求给出伪码. 解答: int maxSum(vector<int&g ...
- 第十讲_图像检索 Image Retrieval
第十讲_图像检索 Image Retrieval 刚要 主要是图像预处理和特征提取+相似度计算 相似颜色检索 算法结构 颜色特征提取:统计图片的颜色成分 颜色特征相似度计算 色差距离 发展:欧式距离- ...
- python 读取共享内存
测试环境 centos7 python3.6.5 首先使用c创建内存,这里的方法是:作为参数读一个二进制数据文件进去,把文件的内容作为共享内存的内容 定义块 #include <stdio.h& ...
- 赵雅智_android_frame动画
在開始实例解说之前,先引用官方文档中的一段话: Frame动画是一系列图片依照一定的顺序展示的过程,和放电影的机制非常相似.我们称为逐帧动画.Frame动画能够被定义在XML文件里,也能够全然编码实现 ...
- javascript 转义函数
// 字符转义 html2Escape(sHtml) { return sHtml.replace(/[<>&"]/g, function(c) { return { ' ...
- HDFS源代码分析(二)-----元数据备份机制
前言 在Hadoop中,全部的元数据的保存都是在namenode节点之中,每次又一次启动整个集群,Hadoop都须要从这些持久化了的文件里恢复数据到内存中,然后通过镜像和编辑日志文件进行定期的扫描与合 ...
- 如何将mysql的路径加入环境变量
1.打开终端,输入: cd ~ 会进入~文件夹 2.然后输入:touch .bash_profile 回车执行后, 2.再输入:open -e .bash_profile 会在TextEdit中打开这 ...
- YARN和MapReduce的内存设置參考
怎样确定Yarn中容器Container,Mapreduce相关參数的内存设置,对于初始集群,由于不知道集群的类型(如cpu密集.内存密集)我们须要依据经验提供给我们一个參考配置值,来作为基础的配置. ...