题目

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.

分析

求给定字符串的最长回文子串。

这道题有下面三种解决思路:

  1. 暴力法,二层遍历,判断【i,j】子串是否回文,且同时记录最长长度; 显然的,暴力解决必然TLE;

  2. 字符串s中的最长回文串便是s的倒转_s与s的最长公共子串。题目转换为求最长公共子串;

  3. 动态规划解决,类似于lcs的解法,数组flag[i][j]记录s从i到j是不是回文,参考网址

    3.1. 首先初始化,i>=j时,flag[i][j]=true,这是因为s[i][i]是单字符的回文,当i>j时,为true,是因为有可能出现flag[2][1]这种情况,比如bcaa,当计算s从2到3的时候,s[2]==s[3],这时就要计算s[2+1] ?= s[3-1],总的来说,当i>j时置为true,就是为了考虑j=i+1这种情况。

    3.2. 接着比较s[i] ?= s[j],如果成立,那么flag[i][j] = flag[i+1][j-1],否则直接flag[i][j]=false;

AC代码

class Solution {
public:
string longestPalindrome(string s) {
int len = s.length(), max = 1, ss = 0, tt = 0;
bool flag[len][len];
for (int i = 0; i < len; i++)
for (int j = 0; j < len; j++)
if (i >= j)
flag[i][j] = true;
else flag[i][j] = false;
for (int j = 1; j < len; j++)
for (int i = 0; i < j; i++)
{
if (s[i] == s[j])
{
flag[i][j] = flag[i+1][j-1];
if (flag[i][j] == true && j - i + 1 > max)
{
max = j - i + 1;
ss = i;
tt = j;
}
}
else flag[i][j] = false;
}
return s.substr(ss, max);
}
};

其它解法

class Solution {
public:
/*方法一:暴力法*/
string longestPalindrome1(string s) {
if (s.empty())
return false;
//如果源串本身便是回文,则返回源串
if (isPalindrome(s))
return s; int len = s.length(), maxLen = 0;
string ret = "";
for (int i = 0; i < len; ++i)
{
for (int j = i + 1; j < len; ++j)
{
string str = s.substr(i, j - i);
if (isPalindrome(str) && (j - i) > maxLen)
{
ret = str;
maxLen = j - i;
}//if
else
continue;
}//for
}//for
return ret;
} /*方法二:字符串s中的最长回文串便是s的倒转_s与s的最长公共子串*/
string longestPalindrome2(string s) {
if (s.empty())
return false;
//如果源串本身便是回文,则返回源串
if (isPalindrome(s))
return s; //求字符串s的倒置
string rs = s;
reverse(rs.begin(), rs.end()); return lcs(s, rs);
} /*方法三:动态规划*/
string longestPalindrome(string s)
{
if (s.empty())
return false;
int len = s.length(), maxLen = 1, from = 0, to = 0;
vector<vector<int>> flag(len, vector<int>(len,0));
for (int i = 0; i < len; ++i)
{
for (int j = 0; j < len; ++j)
{
//值为1表示 i,j 范围子串为回文串,i>j时值为1,针对j==i+1的情况
if (i >= j)
flag[i][j] = 1;
}//for
}//for for (int j = 1; j < len; ++j)
{
for (int i = 0; i < j; ++i)
{
/*判断从i到j的子串是否为回文串,若字符相等*/
if (s[i] == s[j])
{
/*则i到j是否为子串由 i+1 到 j-1 决定*/
flag[i][j] = flag[i + 1][j - 1]; /*更新最长子串长度和起始结束位置*/
if (flag[i][j] == 1 && (j - i + 1) > maxLen)
{
maxLen = j - i + 1;
from = i;
to = j;
}//if
}else
flag[i][j] = 0;
}//for
}//for
return s.substr(from, maxLen);
} /*求s和rs的最长公共子串*/
string lcs(string s, string rs)
{
return "";
}
/*判断字符串s是否为回文串*/
bool isPalindrome(string s)
{
if (s.empty())
return false;
int lhs = 0, rhs = s.size() - 1;
while (lhs < rhs)
{
if (s[lhs] != s[rhs])
return false;
++lhs;
--rhs;
}//while
return true;
}
};

LeetCode(5)Longest Palindromic Substring的更多相关文章

  1. leetcode 第五题 Longest Palindromic Substring (java)

    Longest Palindromic Substring Given a string S, find the longest palindromic substring in S. You may ...

  2. leetcode第五题--Longest Palindromic Substring

    Problem:Given a string S, find the longest palindromic substring in S. You may assume that the maxim ...

  3. Leetcode:【DP】Longest Palindromic Substring 解题报告

    Longest Palindromic Substring -- HARD 级别 Question SolutionGiven a string S, find the longest palindr ...

  4. leetcode--5 Longest Palindromic Substring

    1. 题目: Given a string S, find the longest palindromic substring in S. You may assume that the maximu ...

  5. LeetCode(3)Longest Substring Without Repeating Characters

    题目: Given a string, find the length of the longest substring without repeating characters. For examp ...

  6. LeetCode (32) Longest Valid Parentheses

    题目 Given a string containing just the characters '(' and ')', find the length of the longest valid ( ...

  7. LeetCode(76) Minimum Window Substring

    题目 Given a string S and a string T, find the minimum window in S which will contain all the characte ...

  8. LeetCode(128) Longest Consecutive Sequence

    题目 Given an unsorted array of integers, find the length of the longest consecutive elements sequence ...

  9. LeetCode(14)Longest Common Prefix

    题目 Write a function to find the longest common prefix string amongst an array of strings. 分析 该题目是求一个 ...

随机推荐

  1. Spring Security在标准登录表单中添加一个额外的字段

    概述 在本文中,我们将通过向标准登录表单添加额外字段来实现Spring Security的自定义身份验证方案. 我们将重点关注两种不同的方法,以展示框架的多功能性以及我们可以使用它的灵活方式. 我们的 ...

  2. Linux环境 Java内存快速查看

    最近生产环境遇到内存老是占用很大的情况,16G的内存Free的内存只剩100多M,仿佛一颗定时炸弹一般,说不定就服务Down了.于是开始网上不断的找查看内存使用的方法.现学现卖,以下通过一个例子来演示 ...

  3. Rest_framework之版本控制、响应器和分页器

    一.访问频率补充 频率: 自定义: 1 定义一个类MyThrottles allow_request(频率限制的逻辑) ==>这两个函数都是派生出来的,继承的类里面封装的. wait(返回一个数 ...

  4. html5 03

    HTML03 一. 表单标签 <form></form> 常用属性 Action 跳转到什么页面 Method  以什么模式提交 Get Url有长度限制 IE6.0 url ...

  5. apple-touch-icon-precomposed

    <link rel="apple-touch-icon-precomposed" href=""> apple-touch-icon-precomp ...

  6. 手机QQ访问时,html页面在QQ中自定义预览和自定义分享

    手机QQ访问时,html页面在QQ中自定义预览和自定义分享 有一天,产品说要做个自定义预览和分享功能,于是很快在微信上实现了,可是不知道在QQ上怎么实现,查看了很多网站,最后才找到了解决方案,于是想和 ...

  7. Redis哨兵原理详解

    一.概述 Redis哨兵(以下称哨兵)是为Redis提供一个高可靠解决方案,对一定程序上的错误,可以不需要人工干预自行解决. 哨兵功能还有监视.事件通知.配置功能.以下是哨兵的功能列表: 监控:不间断 ...

  8. DA层(数据访问层)的方法不用静态的

    1.静态方法,不会经过构造函数,所以你不能通过构造函数来初始参数,你只能通过传递参数,来初始他当你有多种参数需要传递的时候,你就要不断重载他了.当然你可以用参数型的类型,不过如果参数有一定结构,就很麻 ...

  9. NGUI类之间的关系架构

    NGUI Drawcall 1.使用同一个altals的元素尽量放在同一个UIPanel下面,在NGUI中,它消耗的drawcall是以每个Panel为独立计算单位进行计算的. 2.如果一个UIPan ...

  10. KMP算法入门讲解

    字符串匹配问题.假设文本是一个长度为$n$的字符串$T$,模板是一个长度为$m$的字符串$P$,且$m\leq n$.需要求出模板在文本中的所有匹配点$i$,即满足$T[i]=P[0],T[I+1]= ...