题意:

给出一个长度为\(n(1 \leq n \leq 10^5)\)的序列\(a\)

有若干次查询l r:找到一个\(x\)使得\(\sum \limits_{l \leq i \leq r} \left | x-a_i \right |\)的值最小。

分析:

有这样一个结论:\(x\)为子序列的中位数时差的绝对值之和最小。

证明也很简单:

将序列中的每个元素对应到数轴上的点,\(x\)是数轴上一个动点。

设\(x\)左边有\(l\)个点,右边有\(r\)个点。

如果动点向右移动\(\Delta x\)距离(而且保证移动后左右两侧点数不变),那么目标值就会变化\(l \Delta x - r \Delta x\)。

如果\(l<r\),这个值会变小;如果\(l>r\),那么向左移动这个值会变小。

直到左右两侧点数相等。

对于这道题就可以很方便地计算出答案:计算出中位数的大小\(mid\),中位数左右两侧数字的个数\(cnt_l,cnt_r\)以及的对应的和\(sum_l,sum_r\)。

最终答案就是:\((mid \cdot cnt_l - sum_l) + (sum_r - mid \cdot cnt_r)\)

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long LL;
const int maxn = 100000 + 10;
const int maxd = 20; int n;
int sorted[maxn]; int T[maxd][maxn], cnt[maxd][maxn];
LL sum[maxd][maxn], pre[maxn]; void build(int d, int L, int R) {
int M = (L + R) / 2;
int lsame = M - L + 1;
for(int i = L; i <= R; i++)
if(T[d][i] < sorted[M]) lsame--;
int lpos = L, rpos = M + 1;
for(int i = L; i <= R; i++) {
if(i == L) { sum[d][i] = 0; cnt[d][i] = 0; }
else { sum[d][i] = sum[d][i-1]; cnt[d][i] = cnt[d][i-1]; }
if(T[d][i] < sorted[M] || (T[d][i] == sorted[M] && lsame)) {
cnt[d][i]++;
sum[d][i] += T[d][i];
T[d+1][lpos++] = T[d][i];
if(T[d][i] == sorted[M]) lsame--;
} else T[d+1][rpos++] = T[d][i];
} if(L < M) build(d + 1, L, M);
if(M + 1 < R) build(d + 1, M + 1, R);
} LL q_kth, q_sum; void query(int d, int L, int R, int qL, int qR, int k) {
if(L == R) { q_kth = T[d][L]; q_sum += T[d][L]; return; }
int M = (L + R) / 2;
int numl;
if(qL == L) numl = 0;
else numl = cnt[d][qL - 1];
int numr = cnt[d][qR];
int num = numr - numl;
if(num >= k) {
query(d + 1, L, M, L + numl, L + numr - 1, k);
} else {
LL suml;
if(qL == L) suml = 0;
else suml = sum[d][qL - 1];
q_sum += sum[d][qR] - suml;
numl = qL - L - numl;
numr = qR - L + 1 - numr;
query(d + 1, M+1, R, M+1+numl, M+numr, k - num);
}
} int main()
{
int _; scanf("%d", &_);
for(int kase = 1; kase <= _; kase++) {
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", sorted + i);
pre[i] = pre[i - 1] + sorted[i];
T[0][i] = sorted[i];
}
sort(sorted + 1, sorted + 1 + n);
build(0, 1, n); printf("Case #%d:\n", kase);
int q; scanf("%d", &q);
while(q--) {
int l, r; scanf("%d%d", &l, &r);
l++; r++;
int k = (r - l) / 2 + 1;
q_sum = 0;
query(0, 1, n, l, r, k);
LL ans = q_kth * k - q_sum;
ans += (pre[r] - pre[l-1] - q_sum) - q_kth * (r - l + 1 - k);
printf("%lld\n", ans);
}
printf("\n");
} return 0;
}

HDU 3473 Minimum Sum 划分树的更多相关文章

  1. HDU 3473 Minimum Sum 划分树,数据结构 难度:1

    http://acm.hdu.edu.cn/showproblem.php?pid=3473 划分树模板题目,需要注意的是划分树的k是由1开始的 划分树: 参考:http://blog.csdn.ne ...

  2. HDU 3473 Minimum Sum (划分树)

    题意:给定一个数组,有Q次的询问,每次询问的格式为(l,r),表示求区间中一个数x,使得sum = sigma|x - xi|最小(i在[l,r]之间),输出最小的sum. 思路:本题一定是要O(nl ...

  3. HDU 3473 Minimum Sum (划分树求区间第k大带求和)(转)

    题意:在区间中找一个数,求出该区间每个数与这个数距离的总和,使其最小 找的数字是中位数(若是偶数个,则中间随便哪个都可)接着找到该区间比此数大的数的总和 区间中位数可以使用划分树,然后在其中记录:每层 ...

  4. HDU 3473 Minimum Sum(划分树)

    Minimum Sum Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  5. hdu 3473 Minimum Sum

    传送门 之前看挑战的时候看到一道分桶法的题目,其实我不是很明白分桶法应该怎么写.看到poj后面的讨论版上写着划分树裸题,而我以前就听说过了划分树,就干脆拿来学习一下.在写这篇博客的时候,其实我还是对这 ...

  6. HDU-3743 Minimum Sum,划分树模板

    Minimum Sum 被这个题坑了一下午,原来只需找一个最中间的数即可,我以为是平均数. 题意:找一个数使得这个数和区间内所有数的差的绝对值最小.输出最小值. 开始用线段树来了一发果断T了,然后各种 ...

  7. hdu 3473 裸的划分树

    思路: 用Sum[dep][i]记录从tree[po].l到i中进入左子树的和. #include<iostream> #include<algorithm> #include ...

  8. 【HDOJ】3473 Minimum Sum

    划分树解.主席树解MLE. /* 3473 */ #include <iostream> #include <sstream> #include <string> ...

  9. hdu 2665 Kth number(划分树模板)

    http://acm.hdu.edu.cn/showproblem.php?pid=2665 [ poj 2104 2761 ]  改变一下输入就可以过 http://poj.org/problem? ...

随机推荐

  1. GC是如何回收SoftReference对象的

    看Fresco的代码中,有这样的一个类: /** * To eliminate the possibility of some of our objects causing an OutOfMemor ...

  2. WebStorm快捷键(Mac版)

    编辑 Command+alt+T 用 (if..else, try..catch, for, etc.)包住 Command+/ 注释/取消注释的行注释 Command+alt+/ 注释/取消注释与块 ...

  3. IDEA对比文件

    和另一个文件对比:右击文件,选择另一个文件 和剪切板的内容对比:右击代码区域

  4. HTML5标签选择指引

  5. Linux shell标准输入,标准输出,错误输出

    shell中可能经常能看到:1>/dev/null  2>&1  eg:sudo kill -9 `ps -elf |grep -v grep|grep $1|awk '{prin ...

  6. SaaS 系统架构设计经验总结

    2B SaaS系统最近几年都很火.很多创业公司都在尝试创建企业级别的应用 cRM, HR,销售, Desk SaaS系统.很多SaaS创业公司也拿了大额风投.毕竟SaaS相对传统软件的优势非常明显. ...

  7. jquery的uploadify插件实现的批量上传V3.2.1版

    你需要如下配置(包括引入文件)HTML: <html xmlns="http://www.w3.org/1999/xhtml"> <head runat=&quo ...

  8. 【UML】状态图Statechart diagram(转)

    前言         UML由动态图和静态图组成,状态图就是属于动态图中较为重要的一张图. 定义         用来描述一个特定对象的所有可能状态以及由于各种事件的发生而引起的状态之间的转移. 目的 ...

  9. JS给数字加千位分隔符

    本文原链接:https://www.jianshu.com/p/928c68f92c0c JavaScript实现千位分隔符 将普通的数字转换为带千位分隔符格式的数字字符串是一个非常常见的问题,千位分 ...

  10. 干净卸载 Cloudera CDH 5 beta2

    Cloudera 的官方介绍: http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/4.8.1/Cloudera ...