概率图模型(PGM)学习笔记(二)贝叶斯网络-语义学与因子分解
概率分布(Distributions)
如图1所看到的,这是最简单的联合分布案例,姑且称之为学生模型。
图1
当中包括3个变量。各自是:I(学生智力,有0和1两个状态)、D(试卷难度,有0和1两个状态)、G(成绩等级,有1、2、3三个状态)。
表中就是概率的联合分布了,表中随便去掉全部包括某个值的行。就能对分布表进行缩减。
比如能够去掉全部G不为1的行。这样就仅仅剩下了1、4、7、10行,这样他们的概率之和就不为1了,所以能够又一次标准化(Renormalization)。如图2所看到的。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveWNoZW5nX3NqdHU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
图2
反之也能够把全部含有某个值得行相加。就是边缘化(Marginalization),如图3所看到的。
图3
条件概率分布(Conditional ProbabilityDistribution, CPD)
已知学生的智力和试卷难度。学生得分的分布就是条件概率。
如图4所看到的。
图4
因子(Factors)
因子是随机变量的函数。
因子是处理概率分布的的基本手段。
因子是高维空间中用以定义概率分布的基本单元。
因子能够相乘(图5)、边缘化(图6)以及缩减(图7)。
图5
图6
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveWNoZW5nX3NqdHU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
图7
前面提到的学生模型,其条件概率分布能够画在一张图里面。如图8.
每一个节点代表一个因子,当中有些CPD已经蜕化成非条件概率了。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveWNoZW5nX3NqdHU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
图8
贝叶斯网络的链式法则(Chain Rule)
如图9所看到的。概率分布由因子的积来定义。
图9
比如
因此,通过链式法则。贝叶斯网络可以表示联合概率分布:
贝叶斯网络的重要性质是概率和为1
一个简单的概率图是血型模型
当中G指基因型,B指血型。
能够看到血型仅仅由自己的基因型决定,而基因型则由父母两人的基因型决定。如图10.
图10
欢迎參与讨论并关注本博客和微博以及知乎个人主页,兴许内容继续更新哦~
转载请您尊重作者的劳动,完整保留上述文字以及本文链接。谢谢您的支持!
概率图模型(PGM)学习笔记(二)贝叶斯网络-语义学与因子分解的更多相关文章
- Stanford概率图模型: 第一讲 有向图-贝叶斯网络
原文链接(系列):http://blog.csdn.net/yangliuy/article/details/8067261 概率图模型(Probabilistic Graphical Model)系 ...
- [ML学习笔记] 朴素贝叶斯算法(Naive Bayesian)
[ML学习笔记] 朴素贝叶斯算法(Naive Bayesian) 贝叶斯公式 \[P(A\mid B) = \frac{P(B\mid A)P(A)}{P(B)}\] 我们把P(A)称为"先 ...
- 贝叶斯网络与LDA
一.一些概念 互信息: 两个随机变量x和Y的互信息,定义X, Y的联合分布和独立分布乘积的相对熵. 贝叶斯公式: 贝叶斯带来的思考: 给定某些样本D,在这些样本中计算某结论出现的概率,即 给定样本D ...
- 机器学习之朴素贝叶斯&贝叶斯网络
贝叶斯决决策论 在所有相关概率都理想的情况下,贝叶斯决策论考虑基于这些概率和误判损失来选择最优标记,基本思想如下: (1)已知先验概率和类条件概率密度(似然) (2)利用贝叶斯转化为后验概 ...
- 概率图模型(PGM)学习笔记(四)-贝叶斯网络-伯努利贝叶斯-多项式贝叶斯
之前忘记强调了一个重要差别:条件概率链式法则和贝叶斯网络链式法则的差别 条件概率链式法则 贝叶斯网络链式法则,如图1 图1 乍一看非常easy认为贝叶斯网络链式法则不就是大家曾经学的链式法则么,事实上 ...
- 概率图形模型(PGM)学习笔记(四)-贝叶斯网络-伯努利贝叶斯-贝叶斯多项式
之前忘记强调重要的差异:链式法则的条件概率和贝叶斯网络的链式法则之间的差异 条件概率链式法则 P\left({D,I,G,S,L} \right) = P\left( D \right)P\left( ...
- 机器学习&数据挖掘笔记_18(PGM练习二:贝叶斯网络在遗传图谱在的应用)
前言: 这是coursera课程:Probabilistic Graphical Models上的第二个实验,主要是用贝叶斯网络对基因遗传问题进行一些计算.具体实验内容可参考实验指导教材:bayes ...
- 概率图模型(PGM) —— 贝叶斯网络(Bayesian Network)
概率图模型是图论与概率方法的结合产物.Probabilistic graphical models are a joint probability distribution defined over ...
- PGM学习之二 PGM模型的分类与简介
废话:和上一次的文章确实隔了太久,希望趁暑期打酱油的时间,将之前学习的东西深入理解一下,同时尝试用Python写相关的机器学习代码. 一 PGM模型的分类 通过上一篇文章的介绍,相信大家对PGM的定义 ...
随机推荐
- 《Linux命令行与shell脚本编程大全 第3版》Linux命令行---33
以下为阅读<Linux命令行与shell脚本编程大全 第3版>的读书笔记,为了方便记录,特地与书的内容保持同步,特意做成一节一次随笔,特记录如下:
- 安装配置Vim中文帮助文档
1.home/.vimrc是用户自己的vim配置文件,在这个配置文件中设置的配置只影响该用安装前的准备工作: 在home目录下列新建文件夹 : .vim ------------------> ...
- Netbeans 8.2启动参数含义及配置
在manjaro linux中Netbeans8.2 + JDK 1.8 netbeans的配置文件具体在:/usr/share/netbeans/etc/netbeans.conf,需要使用root ...
- Apache + mod_wsgi部署webpy应用
Apache + mod_wsgi部署webpy应用 引用:http://webpy.org/cookbook/mod_wsgi-apache.zh-cn 下面的步骤在Apache-2.2.3 ( ...
- Apollo 分布式配置中心
1. 介绍 Apollo(阿波罗)是携程框架部门研发的分布式配置中心,能够集中化管理应用不同环境.不同集群的配置,配置修改后能够实时推送到应用端,并且具备规范的权限.流程治理等特性,适用于微服务配置 ...
- SecureCRT发送键盘按键对应表(转义字符)
\r 发送回车(CR) \n 发送换行符(LF) \b 发送退格 \e 发送一个转义 \t 发送一个标签 \\ 发送一个反斜杠字符 \v 将剪贴板的内容粘贴到活动状态会话窗口 \p 暂停一秒钟
- 【spring boot】11.spring-data-jpa的详细介绍和复杂使用
==================================================================================================== ...
- IDEA使用Maven打包时如何去掉测试阶段
如图
- 报错:LINK : fatal error LNK1123: 转换到 COFF 期间失败: 文件无效或损坏 1>
这段时间忙于看文献,没用过VS了. 今天用着用着就报错了: LINK : fatal error LNK1123: 转换到 COFF 期间失败: 文件无效或损坏 1> 问度娘,大神给出了解决方法 ...
- 传输层:TCP 协议
传输层:TCP 协议 一.概述 TCP 和 UDP 处在同一层——运输层,但是它们有很多的不同.TCP 是 TCP/IP 系列协议中最复杂的部分,它具有以下特点: (1) TCP 提供 可靠的 数据传 ...