CF-1096C Polygon for the Angle
CF-1096C Polygon for the Angle
https://codeforces.com/contest/1096/problem/C

题意:给一个角度ang(1<=ang<=180) 然后输出如图所示规则的最小正n边形的边数
分析:abc三点构成一个三角形,而三角形内角的比例就对应于它们各自对应的那段边数比。如图,54度对应三份,剩下的分别对应五份和两份。
所以,对于任意一个角度ang,先求出g=gcd(ang,180),即每一边可以对应多少度,然后 n=180/g 即为正n边形的边数,wait wait!是不是有点太快了,别忘了我们的前提条件,我们是用三角形内角比例等于对应边数比得到的结论,我们要让它满足能够组成三角形这一条件,所以发现当 ang/180==(n-1)/n 时(想一想为什么是这样),就无法组成三角形(因为只剩下一份了,不够与ang组成三角形),这个时候只需将 n乘以2即可。
#include <bits/stdc++.h>
using namespace std;
int T,ang,n;
int main()
{
cin>>T;
while(T--)
{
cin >> ang;
int n = 180/__gcd(ang,180);
if(ang * n / 180 == n-1){
n*=2;
}
cout << n << endl;
}
}
CF-1096C Polygon for the Angle的更多相关文章
- C. Polygon for the Angle 几何数学
C. Polygon for the Angle 几何数学 题意 给出一个度数 ,问可以实现的最小的n的n边形是多少 思路 由n边形的外角和是180度直接就可以算出最小的角是多少 如果给出的度数是其最 ...
- 【数学】【CF1096C】 Polygon for the Angle
Description 给定一个角度 \(\theta\),请你寻找一个正 \(n\) 边型,满足在这个正 \(n\) 边型上找三个顶点 \(A,B,C\) (可以不相邻),使得 \(\angle A ...
- C. Polygon for the Angle(几何)
题目链接:http://codeforces.com/contest/1096/problem/C 题目大意:T是测试样例,然后每一次输入一个角度,然后问你在一个n边形里面,能不能构成这个角度,如果能 ...
- CF1096C Polygon for the Angle
思路: 要想到正n边形中所有可能的ang为180 * k / n (1 <= k <= n - 2). 根据n = 180 * k / ang, n是大于等于3的整数,并且n >= ...
- Educational Codeforces Round 57 (Rated for Div. 2)
我好菜啊. A - Find Divisible 好像没什么可说的. #include<cstdio> #include<cstring> #include<algori ...
- Educational Codeforces Round 57
2018.12.28 22:30 看着CF升高的曲线,摸了摸自己的头发,我以为我变强了,直到这一场Edu搞醒了我.. 从即将进入2018年末开始,开启自闭场集合,以纪念(dian)那些丢掉的头发 留 ...
- WPF学习05:2D绘图 使用Transform进行控件变形
在WPF学习04:2D绘图 使用Shape绘基本图形中,我们了解了如何绘制基本的图形. 这一次,我们进一步,研究如何将图形变形. 例子 一个三角形,经Transform形成组合图形: XAML代码: ...
- SVG的Transform使用
SVG的Transform使用: <%@ page language="java" contentType="text/html; charset=UTF-8&qu ...
- Educational Codeforces Round 57题解
A.Find Divisible 沙比题 显然l和2*l可以直接满足条件. 代码 #include<iostream> #include<cctype> #include< ...
随机推荐
- scrapy.Request使用meta传递数据,以及deepcopy的使用
scrapy.Request(url[,callback,method="GET",headers,body,cookies,meta,dont_filter=False]) ...
- 【Aizu - ALDS1_7_A】Rooted Trees(树的表达)
Rooted Trees Descriptions: A graph G = (V, E) is a data structure where V is a finite set of vertice ...
- GitHub使用方法(初级)
[初识Github] Git 是一个分布式的版本控制系统,最初由Linus Torvalds编写,用作Linux内核代码的管理.在推出后,Git在其它项目中也取得了很大成功,尤其是在Ruby社区中.目 ...
- 统计最长回文串(传说中的Manacher算法)Hihocoder 1032
算法的核心就在这一句上了:p[i] = min(p[2*id-i], p[id] + id - i); #include <iostream> #include <cstdio> ...
- HDU - 6312( 2018 Multi-University Training Contest 2)
bryce1010模板 http://acm.hdu.edu.cn/showproblem.php?pid=6312 输出前几项,都是"Yes" #include <bits ...
- 2017浙江工业大学-校赛决赛 小M和天平
Description 小M想知道某件物品的重量,但是摆在他面前的只有一个天平(没有游标)和一堆石子,石子可以放左边也可以放右边.他现在知道每个石子的重量.问能不能根据上述条件,能不能测出所问的重量. ...
- Hive_Hive和数据仓库简介
文章摘自 : http://www.imooc.com/video/7573 Hive是建立在Hadoop HDFS上的数据仓库基础架构.Hive可以用来进行数据的ETL.Hive定义了简单的类似SQ ...
- js判断网页访问设备类型
有时候我们会需要来根据不同的设备访问进行不同的操作,在网上找了一下,主要是根据Navigator对象, if(/Android|Windows Phone|webOS|iPhone|iPod|Blac ...
- ASP.NET Cookie的登录验证
做用户登录,我一直用form验证的方式.有时候,为了节省时间,用户希望用户名输入框能够记住用户名,省得下次重新输入.这个时候光用form验证是不行的,因为form验证的话,用户一退出系统就失效了,所以 ...
- SSM环境集成log4j
本文只针对非Maven环境: 1.拷入log4j相关的.jar 2.在web.xml中配置 <!--由Spring载入的Log4j配置文件位置--> <context-param&g ...