#include <stdio.h>
#include <string.h>
#include "cv.h"
#include "cvaux.h"
#include "highgui.h" using namespace cv; //globle variables
int nTrainFaces = ; // number of trainning images
int nEigens = ; // number of eigenvalues
IplImage** faceImgArr = ; // array of face images
CvMat* personNumTruthMat = ; // array of person numbers
IplImage* pAvgTrainImg = ; // the average image
IplImage** eigenVectArr = ; // eigenvectors
CvMat* eigenValMat = ; // eigenvalues
CvMat* projectedTrainFaceMat = ; // projected training faces //// Function prototypes
void learn();
void recognize();
void doPCA();
void storeTrainingData();
int loadTrainingData(CvMat** pTrainPersonNumMat);
int findNearestNeighbor(float* projectedTestFace);
int loadFaceImgArray(char* filename);
void printUsage(); int main( int argc, char** argv )
{
if((argc != ) && (argc != )){
printUsage();
return -;
} if( !strcmp(argv[], "train" )){
learn();
} else if( !strcmp(argv[], "test") ){
recognize();
} else {
printf("Unknown command: %s\n", argv[]);
}
return ;
} void printUsage(){
printf("Usage: eigenface <command>\n",
" Valid commands are\n"
" train\n"
" test\n"
);
} void learn(){
int i; // load training data
nTrainFaces = loadFaceImgArray("train.txt");
if( nTrainFaces < ){
fprintf(
stderr,
"Need 2 or more training faces\n"
"Input file contains only %d\n",
nTrainFaces
);
return;
} // do PCA on the training faces
doPCA(); // project the training images onto the PCA subspace
projectedTrainFaceMat = cvCreateMat(nTrainFaces, nEigens, CV_32FC1);
for(i = ; i < nTrainFaces; i ++){
cvEigenDecomposite(
faceImgArr[i],
nEigens,
eigenVectArr,
, ,
pAvgTrainImg,
projectedTrainFaceMat->data.fl + i*nEigens
);
} // store the recognition data as an xml file
storeTrainingData();
} int loadFaceImgArray(char* filename){
FILE* imgListFile = ;
char imgFilename[];
int iFace, nFaces = ; // open the input file
imgListFile = fopen(filename, "r"); // count the number of faces
while( fgets(imgFilename, , imgListFile) ) ++ nFaces;
rewind(imgListFile); // allocate the face-image array and person number matrix
faceImgArr = (IplImage **)cvAlloc( nFaces*sizeof(IplImage *) );
personNumTruthMat = cvCreateMat( , nFaces, CV_32SC1 ); // store the face images in an array
for(iFace=; iFace<nFaces; iFace++){
//read person number and name of image file
fscanf(imgListFile, "%d %s", personNumTruthMat->data.i+iFace, imgFilename); // load the face image
faceImgArr[iFace] = cvLoadImage(imgFilename, CV_LOAD_IMAGE_GRAYSCALE);
} fclose(imgListFile); return nFaces;
} void doPCA(){
int i;
CvTermCriteria calcLimit;
CvSize faceImgSize; // set the number of eigenvalues to use
nEigens = nTrainFaces - ; // allocate the eigenvector images
faceImgSize.width = faceImgArr[]->width;
faceImgSize.height = faceImgArr[]->height;
eigenVectArr = (IplImage**)cvAlloc(sizeof(IplImage*) * nEigens);
for(i=; i<nEigens; i++){
eigenVectArr[i] = cvCreateImage(faceImgSize, IPL_DEPTH_32F, );
} // allocate the eigenvalue array
eigenValMat = cvCreateMat( , nEigens, CV_32FC1 ); // allocate the averaged image
pAvgTrainImg = cvCreateImage(faceImgSize, IPL_DEPTH_32F, ); // set the PCA termination criterion
calcLimit = cvTermCriteria( CV_TERMCRIT_ITER, nEigens, ); // compute average image, eigenvalues, and eigenvectors
cvCalcEigenObjects(
nTrainFaces,
(void*)faceImgArr,
(void*)eigenVectArr,
CV_EIGOBJ_NO_CALLBACK,
,
,
&calcLimit,
pAvgTrainImg,
eigenValMat->data.fl
);
} void storeTrainingData(){
CvFileStorage* fileStorage;
int i; // create a file-storage interface
fileStorage = cvOpenFileStorage( "facedata.xml", , CV_STORAGE_WRITE); // store all the data
cvWriteInt( fileStorage, "nEigens", nEigens);
cvWriteInt( fileStorage, "nTrainFaces", nTrainFaces );
cvWrite(fileStorage, "trainPersonNumMat", personNumTruthMat, cvAttrList(, ));
cvWrite(fileStorage, "eigenValMat", eigenValMat, cvAttrList(,));
cvWrite(fileStorage, "projectedTrainFaceMat", projectedTrainFaceMat, cvAttrList(,));
cvWrite(fileStorage, "avgTrainImg", pAvgTrainImg, cvAttrList(,)); for(i=; i<nEigens; i++){
char varname[];
sprintf( varname, "eigenVect_%d", i);
cvWrite(fileStorage, varname, eigenVectArr[i], cvAttrList(,));
} //release the file-storage interface
cvReleaseFileStorage( &fileStorage );
} void recognize(){
int i, nTestFaces = ; // the number of test images
CvMat* trainPersonNumMat = ; // the person numbers during training
float* projectedTestFace = ; // load test images and ground truth for person number
nTestFaces = loadFaceImgArray("test.txt");
printf("%d test faces loaded\n", nTestFaces); // load the saved training data
if( !loadTrainingData( &trainPersonNumMat ) ) return; // project the test images onto the PCA subspace
projectedTestFace = (float*)cvAlloc( nEigens*sizeof(float) );
for(i=; i<nTestFaces; i++){
int iNearest, nearest, truth; // project the test image onto PCA subspace
cvEigenDecomposite(
faceImgArr[i],
nEigens,
eigenVectArr,
, ,
pAvgTrainImg,
projectedTestFace
); iNearest = findNearestNeighbor(projectedTestFace);
truth = personNumTruthMat->data.i[i];
nearest = trainPersonNumMat->data.i[iNearest]; printf("nearest = %d, Truth = %d\n", nearest, truth);
}
} int loadTrainingData(CvMat** pTrainPersonNumMat){
CvFileStorage* fileStorage;
int i; // create a file-storage interface
fileStorage = cvOpenFileStorage( "facedata.xml", , CV_STORAGE_READ );
if( !fileStorage ){
fprintf(stderr, "Can't open facedata.xml\n");
return ;
} nEigens = cvReadIntByName(fileStorage, , "nEigens", );
nTrainFaces = cvReadIntByName(fileStorage, , "nTrainFaces", );
*pTrainPersonNumMat = (CvMat*)cvReadByName(fileStorage, , "trainPersonNumMat", );
eigenValMat = (CvMat*)cvReadByName(fileStorage, , "eigenValMat", );
projectedTrainFaceMat = (CvMat*)cvReadByName(fileStorage, , "projectedTrainFaceMat", );
pAvgTrainImg = (IplImage*)cvReadByName(fileStorage, , "avgTrainImg", );
eigenVectArr = (IplImage**)cvAlloc(nTrainFaces*sizeof(IplImage*));
for(i=; i<nEigens; i++){
char varname[];
sprintf( varname, "eigenVect_%d", i );
eigenVectArr[i] = (IplImage*)cvReadByName(fileStorage, , varname, );
} // release the file-storage interface
cvReleaseFileStorage( &fileStorage ); return ;
} int findNearestNeighbor(float* projectedTestFace){
double leastDistSq = DBL_MAX;
int i, iTrain, iNearest = ; for(iTrain=; iTrain<nTrainFaces; iTrain++){
double distSq = ; for(i=; i<nEigens; i++){
float d_i = projectedTestFace[i] -
projectedTrainFaceMat->data.fl[iTrain*nEigens + i];
distSq += d_i*d_i;
} if(distSq < leastDistSq){
leastDistSq = distSq;
iNearest = iTrain;
}
} return iNearest;
}

人脸识别源代码Open cv的更多相关文章

  1. OpenCV图像处理以及人脸识别

    OpenCV基础 OpenCV是一个开源的计算机视觉库.提供了很多图像处理常用的工具 批注:本文所有图片数据都在我的GitHub仓库 读取图片并显示 import numpy as np import ...

  2. 可学习的多人人脸识别程序(基于Emgu CV)

    源代码下载(需要安装Emgu CV,安装方法请百度) 很多朋友使用Emgu CV遇到CvInvoke()的报错,我找到一种解决方法. 把EmguCV目录下bin里面的所有dll复制到C:\WINDOW ...

  3. 基于Emgu CV+百度人脸识别,实现视频动态 人脸抓取与识别

    背景 目前AI 处于风口浪尖,作为 公司的CTO,也作为自己的技术专研,开始了AI之旅,在朋友圈中也咨询 一些大牛对于AI 机器学习框架的看法,目前自己的研究方向主要开源的 AI 库,如:Emgu C ...

  4. C# net Emgu.CV.World 人脸识别 根据照片将人脸抠图出来。

    Emgu.CV.World 人脸识别 根据照片将人脸抠图出来.效果如下: 应用范围:配合摄像头,抓取的图像,抠出人脸照片,这样人脸照片的大小会很小,传输速度快.这样识别速度也就快. 目前我正在做百度人 ...

  5. Visual C++ 经典的人脸识别算法源代码

    说明:VC++ 经典的人脸识别算法实例,提供人脸五官定位具体算法及两种实现流程. 点击下载

  6. 吴裕雄--天生自然python学习笔记:python 用 Open CV通过人脸识别进行登录

    人脸识别登录功能的基本原理是通过对比两张图片的差异度来判断两张图片是 否是同 一人的面部 . 对比图片 差异度 的算法有很多种,本例中使用“颜色直方图” 算法来实现对人脸图像的识别. 下面为比较 im ...

  7. 吴裕雄--天生自然python学习笔记:python 用 Open CV 进行人脸识别

    要对特定图像进行识别,最关键的是要有识别对象的特征文件, OpenCV 己内置 了人脸识别特征文件,我们只需使用 OpenCV 的 CascadeClassifier 类即可进行识别 . 创建 Cas ...

  8. OpenCV人脸识别LBPH算法源码分析

    1 背景及理论基础 人脸识别是指将一个需要识别的人脸和人脸库中的某个人脸对应起来(类似于指纹识别),目的是完成识别功能,该术语需要和人脸检测进行区分,人脸检测是在一张图片中把人脸定位出来,完成的是搜寻 ...

  9. 关于opencv中人脸识别主函数的部分注释详解。

    近段时间在搞opencv的视频人脸识别,无奈自带的分类器的准确度,实在是不怎么样,但又能怎样呢?自己又研究不清楚各大类检测算法. 正所谓,功能是由函数完成的,于是自己便看cvHaarDetectObj ...

随机推荐

  1. lightoj1062【几何(二分)】

    其实就应该想到,哪有那么简单让你直接搞出答案的几何题啊:(而且很有可能是二分? 题意: 有两个梯子,一个靠在左边墙上,一个靠在右边墙上,长度分别为 x 和 y,他们的交点距离地面高度是 c,求两个梯子 ...

  2. unity语言本地化插件 I2 Location2.5.6使用简单记录

    插件下载地址: http://download.csdn.net/detail/onafioo/9579937 1 将插件Resources下的I2Languages.prefab拖到工程里 2 新建 ...

  3. Trie树(小)总结 By cellur925

    关于\(Trie\)树的详细介绍,还请移步这篇深度好文 基本操作 插入 void insert() { int p=0; int len=strlen(tmp+1); for(int i=1;i< ...

  4. IMG 的alt和title的区别(转自 百度空间--路云的世界)

    图片标签img中alt与title的区别 图片标签img中alt与title的区别 可能很多新手在做站内优化的时候,不明白图片标签img中alt与title的区别,今天为大家说一下其中的区别. 大家可 ...

  5. 持续集成~Jenkins里的powershell插件发布远程站点了

    通过添加powershell插件后,使用它强大的windows系统命令,就把发布好的程序包推送到具体的应用服务器了. 系统管理-插件管理-powershell 把它安装,重启jenkins,然后修改你 ...

  6. web移动端滑动插件

    1.slip只有6.3k可以说是非常小了,主要是通过css3里面的transform来改变的位置,控制的是父容器,使用也非常简单,具体信息移步slip.js.一个简单的demo如下 <!DOCT ...

  7. 借助sass的Maps功能使得响应式代码更有条理

    原文来自这里 本文综合了原文(by Jonathan Suh)以及笔者自己的理解. Introduction 众所周知,写代码与写维护性高的代码是两回事.而涉及到响应式,代码又特别容易变的杂乱.借助s ...

  8. 《高性能MySQL》读书笔记之创建高性能的索引

    索引是存储引擎用于快速找到记录的一种数据结构.索引优化是对查询性能优化的最有效手段.索引能够轻易将查询性能提高几个数量级.创建一个最优的索引经常需要重写查询.5.1 索引基础 在MySQL中,存储引擎 ...

  9. C语言abort函数

    C语言编程入门教程,C语言库函数的abort函数的作用是异常终止一个进程,意味着abort后面的代码将不再执行. #include<stdio.h> #include<stdlib. ...

  10. path与classpath区别(转)

    转自http://blog.csdn.net/mydreamongo/article/details/8155408 1.path的作用 path是系统用来指定可执行文件的完整路径,即使不在path中 ...