人脸识别源代码Open cv
#include <stdio.h>
#include <string.h>
#include "cv.h"
#include "cvaux.h"
#include "highgui.h" using namespace cv; //globle variables
int nTrainFaces = ; // number of trainning images
int nEigens = ; // number of eigenvalues
IplImage** faceImgArr = ; // array of face images
CvMat* personNumTruthMat = ; // array of person numbers
IplImage* pAvgTrainImg = ; // the average image
IplImage** eigenVectArr = ; // eigenvectors
CvMat* eigenValMat = ; // eigenvalues
CvMat* projectedTrainFaceMat = ; // projected training faces //// Function prototypes
void learn();
void recognize();
void doPCA();
void storeTrainingData();
int loadTrainingData(CvMat** pTrainPersonNumMat);
int findNearestNeighbor(float* projectedTestFace);
int loadFaceImgArray(char* filename);
void printUsage(); int main( int argc, char** argv )
{
if((argc != ) && (argc != )){
printUsage();
return -;
} if( !strcmp(argv[], "train" )){
learn();
} else if( !strcmp(argv[], "test") ){
recognize();
} else {
printf("Unknown command: %s\n", argv[]);
}
return ;
} void printUsage(){
printf("Usage: eigenface <command>\n",
" Valid commands are\n"
" train\n"
" test\n"
);
} void learn(){
int i; // load training data
nTrainFaces = loadFaceImgArray("train.txt");
if( nTrainFaces < ){
fprintf(
stderr,
"Need 2 or more training faces\n"
"Input file contains only %d\n",
nTrainFaces
);
return;
} // do PCA on the training faces
doPCA(); // project the training images onto the PCA subspace
projectedTrainFaceMat = cvCreateMat(nTrainFaces, nEigens, CV_32FC1);
for(i = ; i < nTrainFaces; i ++){
cvEigenDecomposite(
faceImgArr[i],
nEigens,
eigenVectArr,
, ,
pAvgTrainImg,
projectedTrainFaceMat->data.fl + i*nEigens
);
} // store the recognition data as an xml file
storeTrainingData();
} int loadFaceImgArray(char* filename){
FILE* imgListFile = ;
char imgFilename[];
int iFace, nFaces = ; // open the input file
imgListFile = fopen(filename, "r"); // count the number of faces
while( fgets(imgFilename, , imgListFile) ) ++ nFaces;
rewind(imgListFile); // allocate the face-image array and person number matrix
faceImgArr = (IplImage **)cvAlloc( nFaces*sizeof(IplImage *) );
personNumTruthMat = cvCreateMat( , nFaces, CV_32SC1 ); // store the face images in an array
for(iFace=; iFace<nFaces; iFace++){
//read person number and name of image file
fscanf(imgListFile, "%d %s", personNumTruthMat->data.i+iFace, imgFilename); // load the face image
faceImgArr[iFace] = cvLoadImage(imgFilename, CV_LOAD_IMAGE_GRAYSCALE);
} fclose(imgListFile); return nFaces;
} void doPCA(){
int i;
CvTermCriteria calcLimit;
CvSize faceImgSize; // set the number of eigenvalues to use
nEigens = nTrainFaces - ; // allocate the eigenvector images
faceImgSize.width = faceImgArr[]->width;
faceImgSize.height = faceImgArr[]->height;
eigenVectArr = (IplImage**)cvAlloc(sizeof(IplImage*) * nEigens);
for(i=; i<nEigens; i++){
eigenVectArr[i] = cvCreateImage(faceImgSize, IPL_DEPTH_32F, );
} // allocate the eigenvalue array
eigenValMat = cvCreateMat( , nEigens, CV_32FC1 ); // allocate the averaged image
pAvgTrainImg = cvCreateImage(faceImgSize, IPL_DEPTH_32F, ); // set the PCA termination criterion
calcLimit = cvTermCriteria( CV_TERMCRIT_ITER, nEigens, ); // compute average image, eigenvalues, and eigenvectors
cvCalcEigenObjects(
nTrainFaces,
(void*)faceImgArr,
(void*)eigenVectArr,
CV_EIGOBJ_NO_CALLBACK,
,
,
&calcLimit,
pAvgTrainImg,
eigenValMat->data.fl
);
} void storeTrainingData(){
CvFileStorage* fileStorage;
int i; // create a file-storage interface
fileStorage = cvOpenFileStorage( "facedata.xml", , CV_STORAGE_WRITE); // store all the data
cvWriteInt( fileStorage, "nEigens", nEigens);
cvWriteInt( fileStorage, "nTrainFaces", nTrainFaces );
cvWrite(fileStorage, "trainPersonNumMat", personNumTruthMat, cvAttrList(, ));
cvWrite(fileStorage, "eigenValMat", eigenValMat, cvAttrList(,));
cvWrite(fileStorage, "projectedTrainFaceMat", projectedTrainFaceMat, cvAttrList(,));
cvWrite(fileStorage, "avgTrainImg", pAvgTrainImg, cvAttrList(,)); for(i=; i<nEigens; i++){
char varname[];
sprintf( varname, "eigenVect_%d", i);
cvWrite(fileStorage, varname, eigenVectArr[i], cvAttrList(,));
} //release the file-storage interface
cvReleaseFileStorage( &fileStorage );
} void recognize(){
int i, nTestFaces = ; // the number of test images
CvMat* trainPersonNumMat = ; // the person numbers during training
float* projectedTestFace = ; // load test images and ground truth for person number
nTestFaces = loadFaceImgArray("test.txt");
printf("%d test faces loaded\n", nTestFaces); // load the saved training data
if( !loadTrainingData( &trainPersonNumMat ) ) return; // project the test images onto the PCA subspace
projectedTestFace = (float*)cvAlloc( nEigens*sizeof(float) );
for(i=; i<nTestFaces; i++){
int iNearest, nearest, truth; // project the test image onto PCA subspace
cvEigenDecomposite(
faceImgArr[i],
nEigens,
eigenVectArr,
, ,
pAvgTrainImg,
projectedTestFace
); iNearest = findNearestNeighbor(projectedTestFace);
truth = personNumTruthMat->data.i[i];
nearest = trainPersonNumMat->data.i[iNearest]; printf("nearest = %d, Truth = %d\n", nearest, truth);
}
} int loadTrainingData(CvMat** pTrainPersonNumMat){
CvFileStorage* fileStorage;
int i; // create a file-storage interface
fileStorage = cvOpenFileStorage( "facedata.xml", , CV_STORAGE_READ );
if( !fileStorage ){
fprintf(stderr, "Can't open facedata.xml\n");
return ;
} nEigens = cvReadIntByName(fileStorage, , "nEigens", );
nTrainFaces = cvReadIntByName(fileStorage, , "nTrainFaces", );
*pTrainPersonNumMat = (CvMat*)cvReadByName(fileStorage, , "trainPersonNumMat", );
eigenValMat = (CvMat*)cvReadByName(fileStorage, , "eigenValMat", );
projectedTrainFaceMat = (CvMat*)cvReadByName(fileStorage, , "projectedTrainFaceMat", );
pAvgTrainImg = (IplImage*)cvReadByName(fileStorage, , "avgTrainImg", );
eigenVectArr = (IplImage**)cvAlloc(nTrainFaces*sizeof(IplImage*));
for(i=; i<nEigens; i++){
char varname[];
sprintf( varname, "eigenVect_%d", i );
eigenVectArr[i] = (IplImage*)cvReadByName(fileStorage, , varname, );
} // release the file-storage interface
cvReleaseFileStorage( &fileStorage ); return ;
} int findNearestNeighbor(float* projectedTestFace){
double leastDistSq = DBL_MAX;
int i, iTrain, iNearest = ; for(iTrain=; iTrain<nTrainFaces; iTrain++){
double distSq = ; for(i=; i<nEigens; i++){
float d_i = projectedTestFace[i] -
projectedTrainFaceMat->data.fl[iTrain*nEigens + i];
distSq += d_i*d_i;
} if(distSq < leastDistSq){
leastDistSq = distSq;
iNearest = iTrain;
}
} return iNearest;
}
人脸识别源代码Open cv的更多相关文章
- OpenCV图像处理以及人脸识别
OpenCV基础 OpenCV是一个开源的计算机视觉库.提供了很多图像处理常用的工具 批注:本文所有图片数据都在我的GitHub仓库 读取图片并显示 import numpy as np import ...
- 可学习的多人人脸识别程序(基于Emgu CV)
源代码下载(需要安装Emgu CV,安装方法请百度) 很多朋友使用Emgu CV遇到CvInvoke()的报错,我找到一种解决方法. 把EmguCV目录下bin里面的所有dll复制到C:\WINDOW ...
- 基于Emgu CV+百度人脸识别,实现视频动态 人脸抓取与识别
背景 目前AI 处于风口浪尖,作为 公司的CTO,也作为自己的技术专研,开始了AI之旅,在朋友圈中也咨询 一些大牛对于AI 机器学习框架的看法,目前自己的研究方向主要开源的 AI 库,如:Emgu C ...
- C# net Emgu.CV.World 人脸识别 根据照片将人脸抠图出来。
Emgu.CV.World 人脸识别 根据照片将人脸抠图出来.效果如下: 应用范围:配合摄像头,抓取的图像,抠出人脸照片,这样人脸照片的大小会很小,传输速度快.这样识别速度也就快. 目前我正在做百度人 ...
- Visual C++ 经典的人脸识别算法源代码
说明:VC++ 经典的人脸识别算法实例,提供人脸五官定位具体算法及两种实现流程. 点击下载
- 吴裕雄--天生自然python学习笔记:python 用 Open CV通过人脸识别进行登录
人脸识别登录功能的基本原理是通过对比两张图片的差异度来判断两张图片是 否是同 一人的面部 . 对比图片 差异度 的算法有很多种,本例中使用“颜色直方图” 算法来实现对人脸图像的识别. 下面为比较 im ...
- 吴裕雄--天生自然python学习笔记:python 用 Open CV 进行人脸识别
要对特定图像进行识别,最关键的是要有识别对象的特征文件, OpenCV 己内置 了人脸识别特征文件,我们只需使用 OpenCV 的 CascadeClassifier 类即可进行识别 . 创建 Cas ...
- OpenCV人脸识别LBPH算法源码分析
1 背景及理论基础 人脸识别是指将一个需要识别的人脸和人脸库中的某个人脸对应起来(类似于指纹识别),目的是完成识别功能,该术语需要和人脸检测进行区分,人脸检测是在一张图片中把人脸定位出来,完成的是搜寻 ...
- 关于opencv中人脸识别主函数的部分注释详解。
近段时间在搞opencv的视频人脸识别,无奈自带的分类器的准确度,实在是不怎么样,但又能怎样呢?自己又研究不清楚各大类检测算法. 正所谓,功能是由函数完成的,于是自己便看cvHaarDetectObj ...
随机推荐
- 阿里云物联网 .NET Core 客户端 | CZGL.AliIoTClient:1. 连接阿里云物联网
文档目录: 说明 1. 连接阿里云物联网 2. IoT 客户端 3. 订阅Topic与响应Topic 4. 设备上报属性 4.1 上报位置信息 5. 设置设备属性 6. 设备事件上报 7. 服务调用 ...
- tpc-ds99 工具使用
安装部署 tpc-ds-99 工具 解压文件 unzip tpc-ds-tool.zip 进入目录 cd v2.3.0/tools 拷贝Makefile文件 cp Makefile.suite Mak ...
- 用shell脚本监控MySQL主从同步
企业面试题1:(生产实战案例):监控MySQL主从同步是否异常,如果异常,则发送短信或者邮件给管理员.提示:如果没主从同步环境,可以用下面文本放到文件里读取来模拟:阶段1:开发一个守护进程脚本每30秒 ...
- javascript的学习笔记---复习及学习
1.javascript包含三大部分(BOM,DOM,ECMAscript) ECMAscript:规定js的语法规范 BOM:Document Object Model 给我们提供了一套完整的操作页 ...
- SpringBoot | 遇坑总结 | JPA
1. Caused by: org.hibernate.HibernateException: Access to DialectResolutionInfo cannot be null when ...
- ZROI #364. 【2018普转提day18专题】嘤嘤嘤
ZROI #364. [2018普转提day18专题]嘤嘤嘤 直接贴代码 具体见注释 #include<stdio.h> #include<cstring> #include& ...
- c#学习系列之Application.StartupPath的用法(美女时钟的做法)
Application.StartupPath是一个只读属性,是不可以设置的. Application.StarupPath获取启动了应用程序的可执行文件的路径,不包括可执行文件的名称.既是Appli ...
- 120 Triangle 三角形最小路径和
给出一个三角形(数据数组),找出从上往下的最小路径和.每一步只能移动到下一行中的相邻结点上.比如,给你如下三角形:[ [2], [3,4], [6,5,7], [4,1,8,3]] ...
- Leetcode 题解 - 目录
本文从 Leetcode 中精选大概 200 左右的题目,去除了某些繁杂但是没有多少算法思想的题目,同时保留了面试中经常被问到的经典题目. 算法思想 双指针 排序 贪心思想 二分查找 分治 搜索 动态 ...
- (转载)Unity 优化总结
Unity 优化总结 2017-03-10 | 发布 大海明月 zengfeng75@qq.com | 分类 Unity | 标签 Unity 优化 相关文档 UGUI 降低填充率技巧两则 U ...