【BZOJ3251】树上三角形 暴力
【BZOJ3251】树上三角形
Description
Input
Output
Sample Input
1 2 3 4 5
1 2
2 3
3 4
1 5
0 1 3
0 4 5
1 1 4
0 2 5
0 2 3
Sample Output
Y
Y
N
HINT
对于100%的数据,n,q<=100000,点权范围[1,231-1]
题解:正常人看到题,大概都会想到什么树剖+树套树套树什么的吧~
一种naive的做法就是,先将路径上的所有数都拿出来排序,每次只需要判断相邻的三个数能否形成三角形就行了。
仔细观察发现,如果答案为N,那么最坏的情况,就是在排完序后,任意相邻的三个数都满足x<y<z且x+y=z。这不就是斐波那契数列吗?
有什么用呢?
斐波那契数列的增长不是指数级的吗?
也就意味着一旦路径的长度>logn(实测f(47)>2147483647,所以取47或50即可),我们的结果就是Y。
难道我们还要用倍增求出路径长度吗?
朴素LCA就行辣!一旦跑了50次,就直接输出Y。否则就将所有数拿出来,用naive的做法搞一下就行了。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=100010;
int n,m,sum,cnt;
int to[maxn<<1],next[maxn<<1],head[maxn];
int fa[maxn],dep[maxn],v[maxn],p[60];
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void dfs(int x)
{
for(int i=head[x];i!=-1;i=next[i]) fa[to[i]]=x,dep[to[i]]=dep[x]+1,dfs(to[i]);
}
void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
int main()
{
n=rd(),m=rd();
int i,j,a,b,c;
for(i=1;i<=n;i++) v[i]=rd();
memset(head,-1,sizeof(head));
for(i=1;i<n;i++) a=rd(),b=rd(),add(a,b);
dep[1]=1,dfs(1);
for(i=1;i<=m;i++)
{
c=rd(),a=rd(),b=rd(),sum=0;
if(c)
{
v[a]=b;
continue;
}
if(dep[a]<dep[b]) swap(a,b);
while(dep[a]>dep[b]&&sum<50) p[++sum]=v[a],a=fa[a];
while(a!=b&&sum<50) p[++sum]=v[a],p[++sum]=v[b],a=fa[a],b=fa[b];
p[++sum]=v[a];
if(sum>=50)
{
printf("Y\n");
continue;
}
sort(p+1,p+sum+1);
for(j=3;j<=sum;j++)
{
if(p[j]-p[j-1]<p[j-2])
{
printf("Y\n");
break;
}
}
if(j>sum) printf("N\n");
}
return 0;
}
【BZOJ3251】树上三角形 暴力的更多相关文章
- BZOJ3251:树上三角形(乱搞)
Description 给定一大小为n的有点权树,每次询问一对点(u,v),问是否能在u到v的简单路径上取三个点权,以这三个权值为边长构成一个三角形.同时还支持单点修改. Input 第一行两个整数n ...
- bzoj3251: 树上三角形(思维题)
神tmWA了8发调了20min才发现输出没回车T T... 首先考虑一段什么样的序列才会是N... 显然最长的形式就是斐波那契,前两数之和等于第三数之和,这样就无法组成三角形并且序列最长.可以发现在i ...
- BZOJ3251 : 树上三角形
BZOJ AC1000题纪念~~~ 将x到y路径上的点权从小到大排序 如果不存在b[i]使得b[i]+b[i+1]>b[i+2]则无解 此时b数列增长速度快于斐波那契数列,当达到50项时就会超过 ...
- 【bzoj3251】树上三角形 朴素LCA+暴力
题目描述 给定一大小为n的有点权树,每次询问一对点(u,v),问是否能在u到v的简单路径上取三个点权,以这三个权值为边长构成一个三角形.同时还支持单点修改. 输入 第一行两个整数n.q表示树的点数和操 ...
- 树上三角形 BZOJ3251
分析: 模拟赛T3,其实很水,当时出于某些原因,没有去写这道题... len>46必定有解 为了满足不是三角形,那么斐波那契数列是最优选择,而斐波那契数列的第46项超过了2^31-1,所以超过4 ...
- BZOJ 3251 树上三角形
NOIP的东西回成都再说吧... 这题暴力. #include<iostream> #include<cstdio> #include<cstring> #incl ...
- Codeforces Round #264 (Div. 2) E. Caisa and Tree 树上操作暴力
http://codeforces.com/contest/463/problem/E 给出一个总节点数量为n的树,每个节点有权值,进行q次操作,每次操作有两种选项: 1. 询问节点v到root之间的 ...
- BZOJ 3251 树上三角形:LCA【构成三角形的结论】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3251 题意: 给你一棵树,n个节点,每个点的权值为w[i]. 接下来有m个形如(p,a,b ...
- bzoj3251
3251: 树上三角形 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 637 Solved: 262[Submit][Status][Discuss ...
随机推荐
- LeetCode OJ--Word Search **
https://oj.leetcode.com/problems/word-search/ 类似于在棋盘上走步,走过的地方不能再走,每次都可以走当前位置的上.下.左.右,问能不能走出要求的形状来. 深 ...
- (二)Python selenium
chromedriver版本 支持的Chrome版本 v2.29 v56-58v2.28 v55-57v2.27 ...
- ie8实现无刷新文件上传
ie8由于无法使用FormData,想要无刷新上传文件就显得比较麻烦.这里推荐使用jQuery-File-Upload插件,它能够很方便的解决ie8无刷新文件上传问题.(最低兼容到ie6) jQuer ...
- 51nod 1050 循环数组最大子段和【环形DP/最大子段和/正难则反】
1050 循环数组最大子段和 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 关注 N个整数组成的循环序列a[1],a[2],a[3],…,a[n],求该 ...
- 对动态规划(Dynamic Programming)的理解:从穷举开始(转)
转自:http://janfan.cn/chinese/2015/01/21/dynamic-programming.html 动态规划(Dynamic Programming,以下简称dp)是算法设 ...
- Java中的文件上传(原始Servlet实现)
从原始的Servlet来实现文件的上传,代码如下: 参考:https://my.oschina.net/Barudisshu/blog/150026 采用的是Multipart/form-data的方 ...
- 【spring boot hibernate】hibernate命名策略spring.jpa.hibernate.naming-strategy不起作用
对于 spring.jpa.hibernate.naming-strategy = org.hibernate.cfg.ImprovedNamingStrategy hibernate命名策略设置之后 ...
- dedecms图片列表效果调用
效果如图 代码如下: <div class="listbox"> <ul class="e1"> {dede:list pagesize ...
- (转)python装饰器进阶一
Python装饰器进阶之一 先看例子 网上有很多装饰器的文章,上来说半天也没让人看明白装饰器到底是个什么,究竟有什么用,我们直接来看几个例子. Python递归求斐波那契数列 def fibonacc ...
- InnoDB Insert(插入)操作(下)--mysql技术内幕
接上一篇文章,最后做的那个实验,我是想证明mysql innodb存储引擎,commit操作与flush数据到磁盘之间的关系,当与同事交流之后,他说,你应该把innodb_buffer_size的大小 ...