如何用快速傅里叶变换实现DFT
【目标】
如何以 \(O(N \log N)\) 的效率将系数多项式转换为点值多项式。
【前置技能】
众所周知,\(x^n=1\)的根有n个,而且它们分别是\(e^{\frac{2*π*i}{n}}\),即在复平面内的坐标为\((cos(2*π*i),sin(2*π*i))\)。
为了方便描述,我们分别用\(ω_n^0\)~\(ω_n^{n-1}\)来描述这n个根。而且等会我们要算的,就是多项式A在这n个点处的点值。
我们由复数的性质可以得到一些公式:
\((ω_{2n}^{2k})=ω_n^k\)
\((ω_n^k)^2=ω_n^{2k}=ω_{n/2}^{k}\)
\(ω_n^{k+\frac{n}{2}}=-ω_n^k\)
【递归计算点值】
假设我们有一个长度为n的多项式\(A(x)=a_0+a_1*x...a_{n-1}*x^{n-1}\),现在我们设一个过程F(A)来递归地计算\(A(x)\)的点值多项式(而且点值的自变量就是上述n个单位复数根)。为了方便计算,我们设n为2的幂次。
简单地把\(A(x)\)拆分成两个多项式,即设:
\(A_0(x)=a_0+a_2*x+a_4*x^2...+a_{n/2-2}*x^{\frac{n}{2}-1}\)
\(A_1(x)=a_1+a_3*x+a_5*x^2...+a_{n/2-1}*x^{\frac{n}{2}-1}\)
容易发现\(A(x)=A0(x^2)+x*A1(x^2)\)
我们要求的是对于所有k,\(ω_n^k\) 处的点值。
且\(A(ω_n^k)=A_0((ω_n^k)^2)+ω_n^k*A_1((ω_n^k)^2)\)
先求所有的k满足\(k∈[0,n/2)\)
化简易得\(A(ω_n^k)=A_0(ω_{\frac{n}{2}}^k)+ω_n^k*A_1(ω_{\frac{n}{2}}^k)\)
而且对于\(k∈[0,n/2)\),我们也可以得到
\(A(ω_n^{k+\frac{n}{2}})=A_0(ω_n^{2k+n})+ω_n^{k+\frac{n}{2}}*A_1(ω_n^{2k+n})\)
\(=A_0(ω_n^{2k})-ω_n^{k}*A_1(ω_n^{2k})=A_0(ω_{\frac{n}{2}}^k)-ω_n^{k}*A_1(ω_{\frac{n}{2}}^k)\)
此时我们已经能求出所有的点值了,而且我们要用到的条件就是:
\(A_0(ω_{\frac{n}{2}}^k)\) 和 \(A_1(ω_{\frac{n}{2}}^k)\) \(k∈[0,n/2)\)
容易发现这就是子问题,我们只需直接递归 \(F(A_0)\) 和 \(F(A_1)\) 即可。
由主定理,得效率为\(T(N)=O(N)+2*T(\frac{n}{2})=O(N \log N)\)
如何用快速傅里叶变换实现DFT的更多相关文章
- 【笔记篇】(理论向)快速傅里叶变换(FFT)学习笔记w
现在真是一碰电脑就很颓废啊... 于是早晨把电脑锁上然后在旁边啃了一节课多的算导, 把FFT的基本原理整明白了.. 但是我并不觉得自己能讲明白... Fast Fourier Transformati ...
- 快速傅里叶变换(FFT)学习笔记(未完待续)
目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优 ...
- 【清橙A1084】【FFT】快速傅里叶变换
问题描述 离散傅立叶变换在信号处理中扮演者重要的角色.利用傅立叶变换,可以实现信号在时域和频域之间的转换. 对于一个给定的长度为n=2m (m为整数) 的复数序列X0, X1, …, Xn-1,离散傅 ...
- 快速傅里叶变换FFT
多项式乘法 #include <cstdio> #include <cmath> #include <algorithm> #include <cstdlib ...
- 快速傅里叶变换(FFT)算法【详解】
快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章 ...
- [学习笔记] 多项式与快速傅里叶变换(FFT)基础
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...
- 快速傅里叶变换 & 快速数论变换
快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具 ...
- 「快速傅里叶变换(FFT)」学习笔记
FFT即快速傅里叶变换,离散傅里叶变换及其逆变换的快速算法.在OI中用来优化多项式乘法. 本文主要目的是便于自己整理.复习 FFT的算法思路 已知两个多项式的系数表达式,要求其卷积的系数表达式. 先将 ...
- 快速傅里叶变换FFT& 数论变换NTT
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...
随机推荐
- 这 5 个前端组件库,可以让你放弃 jQuery UI
欢迎大家持续关注葡萄城控件技术团队博客,更多更好的原创文章尽在这里~~ 在建立Web应用时,通常都需要用到一些有用的UI组件.无论应用中需要的是日历,滑块,图形或其它用于提升或简化用户交互的组件,那么 ...
- Linux常用网络测试命令
Linux常用网络测试命令 1. ifconfig 可以使用ifconfig命令来配置并查看网络接口的配置情况. 例如: (1) 配置eth0的IP地址, 同时激活该设备. #ifcon ...
- js实现超出一定字数隐藏并用省略号"..."代替,点击后又可进行展开和收起,
原理简单阐述:放两个一模一样的div,把你要展示的文字放进去.页面初始化的时候,第一个div展示,第二个 div隐藏,就是这么简单.(ps:可以直接复制代码到你自己项目中,查看效果) 样式部分(记得引 ...
- R语言学习路线和常用数据挖掘包(转)
对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来.当然,这不是最好的学习方式,最好的方式是——看书.目前,市面上介绍R语言的 ...
- 页面中的平滑滚动——smooth-scroll.js的使用
正常的本页面锚链接跳转的时候跟PPT似的,特别生硬,用户体验非常差. 这时候我们就可以借助smooth-scroll.js这个插件,来实现本页面的平滑的跳转. 1首先,导入必须的JS文件 <sc ...
- SQL SERVER大话存储结构(6)_数据库数据文件
数据库文件有两大类:数据文件跟日志文件,每一个数据库至少各有一个数据文件或者日志文件,数据文件用来存储数据,日志文件用来存储数据库的事务修改情况,可用于恢复数据库使用. 这里分 ...
- 基于查表的整数霍夫变换方法实现(matlab)
暂时先用matlab把算法弄一下,这是基于查表的整数霍夫变换方法实现及解释. 接着再实现FPGA的霍夫变换. 霍夫变换原理和算法这里不多说,可参考以下链接: http://blog.csdn.net/ ...
- 【Web开发】Mean web开发 01-Express实现MVC模式开发
简介 Mean是JavaScript的全栈开发框架.更多介绍 用Express实现MVC模式开发是Mean Web全栈开发中的一部分. Express 是一个基于 Node.js 平台的极简.灵活的 ...
- phpcms通过URL传参
在PHPCMS中都会遇到通过URL传参数的问题,但是默认的只能取到$catid.$page等这类的值,特别是伪静态之后,想获得其他参数根本不可能,有的人用$_GET["参数"]这种 ...
- Nginx实用教程(一):启动、停止、重载配置
Nginx是一个功能强大的web服务器和负载均衡软件,由俄罗斯人开发.Nginx包括一个master进程和数个worker进程,master进程用于读取.解析配置文件和管理worker进程,worke ...