【目标】

  如何以 \(O(N \log N)\) 的效率将系数多项式转换为点值多项式。

【前置技能】

  众所周知,\(x^n=1\)的根有n个,而且它们分别是\(e^{\frac{2*π*i}{n}}\),即在复平面内的坐标为\((cos(2*π*i),sin(2*π*i))\)。

  为了方便描述,我们分别用\(ω_n^0\)~\(ω_n^{n-1}\)来描述这n个根。而且等会我们要算的,就是多项式A在这n个点处的点值。

  我们由复数的性质可以得到一些公式:

  \((ω_{2n}^{2k})=ω_n^k\)

  \((ω_n^k)^2=ω_n^{2k}=ω_{n/2}^{k}\)

  \(ω_n^{k+\frac{n}{2}}=-ω_n^k\)

【递归计算点值】

  假设我们有一个长度为n的多项式\(A(x)=a_0+a_1*x...a_{n-1}*x^{n-1}\),现在我们设一个过程F(A)来递归地计算\(A(x)\)的点值多项式(而且点值的自变量就是上述n个单位复数根)。为了方便计算,我们设n为2的幂次。

  简单地把\(A(x)\)拆分成两个多项式,即设:

  \(A_0(x)=a_0+a_2*x+a_4*x^2...+a_{n/2-2}*x^{\frac{n}{2}-1}\)

  \(A_1(x)=a_1+a_3*x+a_5*x^2...+a_{n/2-1}*x^{\frac{n}{2}-1}\)

  容易发现\(A(x)=A0(x^2)+x*A1(x^2)\)

  我们要求的是对于所有k,\(ω_n^k\) 处的点值。

  且\(A(ω_n^k)=A_0((ω_n^k)^2)+ω_n^k*A_1((ω_n^k)^2)\)

  先求所有的k满足\(k∈[0,n/2)\)

  化简易得\(A(ω_n^k)=A_0(ω_{\frac{n}{2}}^k)+ω_n^k*A_1(ω_{\frac{n}{2}}^k)\)

  而且对于\(k∈[0,n/2)\),我们也可以得到

  \(A(ω_n^{k+\frac{n}{2}})=A_0(ω_n^{2k+n})+ω_n^{k+\frac{n}{2}}*A_1(ω_n^{2k+n})\)

  \(=A_0(ω_n^{2k})-ω_n^{k}*A_1(ω_n^{2k})=A_0(ω_{\frac{n}{2}}^k)-ω_n^{k}*A_1(ω_{\frac{n}{2}}^k)\)

  此时我们已经能求出所有的点值了,而且我们要用到的条件就是:

  \(A_0(ω_{\frac{n}{2}}^k)\) 和 \(A_1(ω_{\frac{n}{2}}^k)\) \(k∈[0,n/2)\)

  容易发现这就是子问题,我们只需直接递归 \(F(A_0)\) 和 \(F(A_1)\) 即可。

  由主定理,得效率为\(T(N)=O(N)+2*T(\frac{n}{2})=O(N \log N)\)

如何用快速傅里叶变换实现DFT的更多相关文章

  1. 【笔记篇】(理论向)快速傅里叶变换(FFT)学习笔记w

    现在真是一碰电脑就很颓废啊... 于是早晨把电脑锁上然后在旁边啃了一节课多的算导, 把FFT的基本原理整明白了.. 但是我并不觉得自己能讲明白... Fast Fourier Transformati ...

  2. 快速傅里叶变换(FFT)学习笔记(未完待续)

    目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优 ...

  3. 【清橙A1084】【FFT】快速傅里叶变换

    问题描述 离散傅立叶变换在信号处理中扮演者重要的角色.利用傅立叶变换,可以实现信号在时域和频域之间的转换. 对于一个给定的长度为n=2m (m为整数) 的复数序列X0, X1, …, Xn-1,离散傅 ...

  4. 快速傅里叶变换FFT

    多项式乘法 #include <cstdio> #include <cmath> #include <algorithm> #include <cstdlib ...

  5. 快速傅里叶变换(FFT)算法【详解】

    快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章 ...

  6. [学习笔记] 多项式与快速傅里叶变换(FFT)基础

    引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...

  7. 快速傅里叶变换 & 快速数论变换

    快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具 ...

  8. 「快速傅里叶变换(FFT)」学习笔记

    FFT即快速傅里叶变换,离散傅里叶变换及其逆变换的快速算法.在OI中用来优化多项式乘法. 本文主要目的是便于自己整理.复习 FFT的算法思路 已知两个多项式的系数表达式,要求其卷积的系数表达式. 先将 ...

  9. 快速傅里叶变换FFT& 数论变换NTT

    相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...

随机推荐

  1. 这 5 个前端组件库,可以让你放弃 jQuery UI

    欢迎大家持续关注葡萄城控件技术团队博客,更多更好的原创文章尽在这里~~ 在建立Web应用时,通常都需要用到一些有用的UI组件.无论应用中需要的是日历,滑块,图形或其它用于提升或简化用户交互的组件,那么 ...

  2. Linux常用网络测试命令

    Linux常用网络测试命令 1. ifconfig     可以使用ifconfig命令来配置并查看网络接口的配置情况.    例如: (1) 配置eth0的IP地址, 同时激活该设备. #ifcon ...

  3. js实现超出一定字数隐藏并用省略号"..."代替,点击后又可进行展开和收起,

    原理简单阐述:放两个一模一样的div,把你要展示的文字放进去.页面初始化的时候,第一个div展示,第二个 div隐藏,就是这么简单.(ps:可以直接复制代码到你自己项目中,查看效果) 样式部分(记得引 ...

  4. R语言学习路线和常用数据挖掘包(转)

    对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来.当然,这不是最好的学习方式,最好的方式是——看书.目前,市面上介绍R语言的 ...

  5. 页面中的平滑滚动——smooth-scroll.js的使用

    正常的本页面锚链接跳转的时候跟PPT似的,特别生硬,用户体验非常差. 这时候我们就可以借助smooth-scroll.js这个插件,来实现本页面的平滑的跳转. 1首先,导入必须的JS文件 <sc ...

  6. SQL SERVER大话存储结构(6)_数据库数据文件

            数据库文件有两大类:数据文件跟日志文件,每一个数据库至少各有一个数据文件或者日志文件,数据文件用来存储数据,日志文件用来存储数据库的事务修改情况,可用于恢复数据库使用.     这里分 ...

  7. 基于查表的整数霍夫变换方法实现(matlab)

    暂时先用matlab把算法弄一下,这是基于查表的整数霍夫变换方法实现及解释. 接着再实现FPGA的霍夫变换. 霍夫变换原理和算法这里不多说,可参考以下链接: http://blog.csdn.net/ ...

  8. 【Web开发】Mean web开发 01-Express实现MVC模式开发

    简介 Mean是JavaScript的全栈开发框架.更多介绍 用Express实现MVC模式开发是Mean Web全栈开发中的一部分. Express 是一个基于 Node.js 平台的极简.灵活的 ...

  9. phpcms通过URL传参

    在PHPCMS中都会遇到通过URL传参数的问题,但是默认的只能取到$catid.$page等这类的值,特别是伪静态之后,想获得其他参数根本不可能,有的人用$_GET["参数"]这种 ...

  10. Nginx实用教程(一):启动、停止、重载配置

    Nginx是一个功能强大的web服务器和负载均衡软件,由俄罗斯人开发.Nginx包括一个master进程和数个worker进程,master进程用于读取.解析配置文件和管理worker进程,worke ...