题目大意:

  给一个范围[1,n],从中找出两个数x,y,使得gcd(x,y)为质数,问有多少对(x,y有序)

解法:

  不难,欧拉函数练手题,可以定义集合P ={x|x为素数},那么我们枚举gcd(x,y)可能等于的情况,对于任意p∈P可以得到:gcd(k1·p,k2·p) = p,当且仅当gcd(k1,k2) =1;那么我们就只需要枚举所有的k1,k2了。不妨设k1>k2,那么给定k1,k2的个数就是phi(k1),因为有序,所以给phi*2,但是,这样是否漏算了呢?没错,漏算了(1,1),补上就行了,那么这个的答案就是计算下面那个表达式。

                              

  稍有常识的人就会看出,如果我们的坦克再前进一步(大雾)要算这个式子,复杂度是O(n^2)的,我们分析一下复杂度主要消耗再哪里。

  1.算phi

    如果我们用暴力公式,也就是的话,复杂度显然是很高的,全算出来高达(不是那个高达)O(n*sqrt(n)),这样的复杂度在1e7内是无法忍受的,所以我们 

    必须另外想办法,下面我引入三个很厉害东西:

      1.当p∈P时,phi(p) = p-1;

       2.如果i mod p = 0, 那么 phi(i * p)=p * phi(i),证明略,其实我也不会证

       3.若i mod p ≠0,  那么 phi( i * p )=phi(i) * ( p-1 ) ;

    有了这三个就容易写出线性的求euler函数了。

  2.二重循环

    里面那一重循环可以在外面递推乱搞,自己想,或者看我代码。

  那么这个的复杂度就降为了O(n);

3.下面是代码

  

 #include<bits/stdc++.h>
using namespace std;
int flag[],p[],tot;
int phi[];
void get_p(int end){
for(int i=;i<=end;i++)
flag[i] = ;
for(int i=; i<=end; i++){
if(flag[i]==){
p[++tot]=i;
phi[i] = i-;
}
for(int j=; j<=tot && p[j]*i<=end; j++){
flag[p[j]*i]=;
if(i%p[j]==){
phi[i*p[j]] = p[j] * phi[i]; //欧拉函数的特性
break;
}else phi[i*p[j]] = (p[j]-) * phi[i];
}
}
}
long long f[]; int main(){
int n;
cin >> n;
get_p(n);
f[] = ;
for(int i=;i<=n;i++){
f[i] = f[i-] +phi[i]*;
}
long long ans = ;
for(int i=;i<=tot;i++){
ans = ans+f[n/p[i]];
}
cout<<ans;
return ;
}

4.拓展

  这个问题就这么轻易的解决了,但是我们稍加思考,就能想到它的一个变式:

  变式链接: bzoj2301

  给一个范围[l,n],[p,m],定义x,y,x∈[1,n],y∈[1,m],使得gcd(x,y)=k,问有多少对(x,y无序)。

  对于这道题,我们不得不引入新的概念,莫比乌斯反演:

  其内涵主要是下面这个公式,其中mu是莫比乌斯函数,其定义为:

  ki表示x的唯一分解后每个质数的次数。µ函数还有一个性质

  上面的莫比乌斯反演公式我们还有一种表达方法,本题要用的就是这个。

5.解决

  可设f(x)表示gcd(a,b)=x的个数,F(x)表示满足x|gcd(a,b)的个数。那么我们可以考虑把区间分为两部分,对于[l,n],我们可以将它分为[1,n]-[1,l]+{l}(又不是搞数学那么讲究干嘛),然后我们先计算在[1,n]中有多少个a是x的倍数,容易得到这个数字为n/x。同理我们可以求得在[1,l]中有l/x个,在[1,m]中有m/x个,在[1,p]中有p/x个。这样我们就容易得到在[l,n]这个闭区间中有s1=(n/x-l/x+[l|x])注意,这里的[l|x]表示的是下面的意思。同样,我们也可以得到在[p,m]中有s2=(m/x-p/x+[p|x])。那么F(x) =s1*s2个(乘法原理)。

 if(x % i == )
return ;
else
return ;

并且我们还能得到另一个式子  ,我们的目的是要求f(k),那么由这个式子和莫比乌斯反演公式可以得到,,嗯,我写一下看看提交上去会不会超时哈。

BZOJ2818 与 BZOJ2301【euler,线性筛,莫比乌斯】的更多相关文章

  1. [BZOJ4804]欧拉心算:线性筛+莫比乌斯反演

    分析 关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板. 代码 #include <bits/stdc++.h> #define rin(i,a,b ...

  2. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

  3. 【数论】【莫比乌斯反演】【线性筛】bzoj2301 [HAOI2011]Problem b

    对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 100%的数据满足:1≤n≤50000,1≤a≤b ...

  4. 【数论】【莫比乌斯反演】【线性筛】hdu6134 Battlestation Operational

    看这个题解吧:http://blog.csdn.net/wubaizhe/article/details/77338332 代码里顺便把几个常用的线性筛附上了. Key:1.gcd(i,j)==1利用 ...

  5. 线性筛-mobius,强大O(n)

    首先,你要知道什么是莫比乌斯函数 然后,你要知道什么是积性函数 最后,你最好知道什么是线性筛 莫比乌斯反演 积性函数 线性筛,见上一篇 知道了,就可以愉快的写mobius函数了 由定义: μ(n)= ...

  6. Luogu2257 YY的GCD/BZOJ2818 Gcd加强版(莫比乌斯反演+线性筛)

    一通套路之后得到 求出中间那个函数的前缀和的话就可以整除分块了. 暴力求的话复杂度其实很优秀了,大约在n~nlogn之间. 不过可以线性筛做到严格线性.考虑其最小质因子,如果是平方因子那么只有其有贡献 ...

  7. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  8. 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和

    只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...

  9. 线性筛-euler,强大O(n)

    欧拉函数是少于或等于n的数中与n互质的数的数目 φ(1)=1(定义) 类似与莫比乌斯函数,基于欧拉函数的积性 φ(xy)=φ(x)φ(y) 由唯一分解定理展开显然,得证 精髓在于对于积性的应用: ){ ...

  10. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

随机推荐

  1. p1217晚餐(简单的dijkstra)

    题目: 输入: 1000 5 61 2 3002 4 2003 4 6003 4 8005 3 1002 5 650 输出: 4 这道题呢,其实就是用邻接矩阵将每条边耗费的体力存起来,然后用dijks ...

  2. 不用搭环境的10分钟AngularJS指令简易入门01(含例子)

    不用搭环境的10分钟AngularJS指令简易入门01(含例子) `#不用搭环境系列AngularJS教程01,前端新手也可以轻松入坑~阅读本文大概需要10分钟~` AngularJS的指令是一大特色 ...

  3. 第34篇 再谈http协议

    从打开一个网址说起 当在浏览器中输入一个网址的时候,浏览器会渲染出对应的网页的内容.作为web开发人员来说,应该知道这个过程: 当输入的一个网址为域名的时候,浏览器则根据本机的网关和DNS服务器来解析 ...

  4. 监听器如何获取Spring配置文件(加载生成Spring容器)

    Spring容器是生成Bean的工厂,我们在做项目的时候,会用到监听器去获取spring的配置文件,然后从中拿出我们需要的bean出来,比如做网站首页,假设商品的后台业务逻辑都做好了,我们需要创建一个 ...

  5. Bat小试牛刀

    前天版本发布后同事才发现有点小瑕疵,当然这是前期的设计和测试没到位造成的.撇开这些不说,我想说的是知识面广一点,做起事情来可能更得心应手些. 大致是这样的,由于版本的迭代,导致发布的程序只能清除一部分 ...

  6. 写lua时需要注意的地方

    条件语句判断时,只有false和nil会导致判断为假,其他的任何值都为真. Lua 的字符串与编码无关: 它不关心字符串中具体内容. 标准 Lua 使用 64 位整数和双精度(64 位)浮点数, 但你 ...

  7. GCD浅析

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica; color: #000000 } span.s1 { } 1.关于GCD ...

  8. KoaHub.js -- 基于 Koa.js 平台的 Node.js web 快速开发框架之koahub-loader

    koahub loader Installation $ npm install koahub-loader Use with koa  // 1.model loader   var model = ...

  9. TextView加边框,自定义,上下左右四条线 颜色,想用哪个用哪个

    1.这是一个自定义的TextView ,看吧,底下就是代码,应该都可以看懂,这里就不多说了 package com.example.admin.myutilsborder;import android ...

  10. python中try except处理程序异常的三种常用方法

    如果你在写python程序时遇到异常后想进行如下处理的话,一般用try来处理异常,假设有下面的一段程序: try: 语句1 语句2 . . 语句N except .........: do somet ...