学习笔记GAN004:DCGAN main.py
Scipy 高端科学计算:http://blog.chinaunix.net/uid-21633169-id-4437868.html
import os #引用操作系统函数文件
    import scipy.misc #引用scipy包misc模块 图像形式存取数组
    import numpy as np #引用numpy包 矩阵计算
    from model import DCGAN #引用model文件DCGAN类
    from utils import pp, visualize, to_json, show_all_variables #引用utils文件pp对象,visualize, to_json, show_all_variables方法
    import tensorflow as tf #引用tensorflow
    flags = tf.app.flags #接受命令行传递参数,相当于接受argv。第一个是参数名称,第二个参数是默认值,第三个是参数描述
    flags.DEFINE_integer("epoch", 25, "Epoch to train [25]") #训练轮数 25
    flags.DEFINE_float("learning_rate", 0.0002, "Learning rate of for adam [0.0002]") #adam优化器 学习速率 0.0002
    flags.DEFINE_float("beta1", 0.5, "Momentum term of adam [0.5]") #adam优化器 动量(参数移动平均数) 0.5
    flags.DEFINE_integer("train_size", np.inf, "The size of train images [np.inf]") #训练画像尺寸,默认无限大正数
    flags.DEFINE_integer("batch_size", 64, "The size of batch images [64]") #图像批大小 64
    flags.DEFINE_integer("input_height", 108, "The size of image to use (will be center cropped). [108]") #输入图像高度 108 均衡的缩放图像(保持图像原始比例),使图片的两个坐标(宽、高)都大于等于 相应的视图坐标(负的内边距)。图像则位于视图的中央。
    flags.DEFINE_integer("input_width", None, "The size of image to use (will be center cropped). If None, same value as input_height [None]") #输入图像宽度,None与高度相同
    flags.DEFINE_integer("output_height", 64, "The size of the output images to produce [64]") #输出图像高度 64
    flags.DEFINE_integer("output_width", None, "The size of the output images to produce. If None, same value as output_height [None]") #输出图像宽度,None与高度相同
    flags.DEFINE_string("dataset", "celebA", "The name of dataset [celebA, mnist, lsun]") #数据集名称 celebA mnist lsun
    flags.DEFINE_string("input_fname_pattern", "*.jpg", "Glob pattern of filename of input images [*]") #图片文件名的搜索扩展名
    flags.DEFINE_string("checkpoint_dir", "checkpoint", "Directory name to save the checkpoints [checkpoint]") #检查点目录名
    flags.DEFINE_string("sample_dir", "samples", "Directory name to save the image samples [samples]") #图片样本保存目录名
    flags.DEFINE_boolean("train", False, "True for training, False for testing [False]") #训练流程开关
    flags.DEFINE_boolean("crop", False, "True for training, False for testing [False]") #训练流程开关
    flags.DEFINE_boolean("visualize", False, "True for visualizing, False for nothing [False]") #可视化开关
    FLAGS = flags.FLAGS
    def main(_): #主程序
      pp.pprint(flags.FLAGS.__flags) #打印命令行参数
      if FLAGS.input_width is None: #如果没有配置输入图像宽度
        FLAGS.input_width = FLAGS.input_height #把输入图像高度作为宽度
      if FLAGS.output_width is None: #如果没有配置输出图像宽度
        FLAGS.output_width = FLAGS.output_height #把输出图像高度作为宽度
      if not os.path.exists(FLAGS.checkpoint_dir): #如果检查点目录不存在
        os.makedirs(FLAGS.checkpoint_dir) #创建检查点目录
      if not os.path.exists(FLAGS.sample_dir): #如果样本目录不存在
        os.makedirs(FLAGS.sample_dir) #创建样本目录
      #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) #设置GPU显存占用比例
      run_config = tf.ConfigProto() #获取配置对象
      run_config.gpu_options.allow_growth = True #GPU显存占用按需增加
      with tf.Session(config=run_config) as sess: #指定配置构建会话
        if FLAGS.dataset == 'mnist': #如果指定数据集为mnist
          dcgan = DCGAN( #构建DCGAN
              sess, #提定会话
              input_width=FLAGS.input_width,
              input_height=FLAGS.input_height,
              output_width=FLAGS.output_width,
              output_height=FLAGS.output_height,
              batch_size=FLAGS.batch_size,
              sample_num=FLAGS.batch_size,
              y_dim=10, #标签维度为10
              dataset_name=FLAGS.dataset,
              input_fname_pattern=FLAGS.input_fname_pattern,
              crop=FLAGS.crop,
              checkpoint_dir=FLAGS.checkpoint_dir,
              sample_dir=FLAGS.sample_dir)
        else:
          dcgan = DCGAN( #构建DCGAN,不指定标签维度
              sess,
              input_width=FLAGS.input_width,
              input_height=FLAGS.input_height,
              output_width=FLAGS.output_width,
              output_height=FLAGS.output_height,
              batch_size=FLAGS.batch_size,
              sample_num=FLAGS.batch_size,
              dataset_name=FLAGS.dataset,
              input_fname_pattern=FLAGS.input_fname_pattern,
              crop=FLAGS.crop,
              checkpoint_dir=FLAGS.checkpoint_dir,
              sample_dir=FLAGS.sample_dir)
        show_all_variables() #显示所有参数
        if FLAGS.train: #如果是训练
          dcgan.train(FLAGS) #指定参数执行构建DCGAN 训练方法
        else: #如果是测试
          if not dcgan.load(FLAGS.checkpoint_dir)[0]: #在检查点目录没有检查点文件,即没有已训练好的模型
            raise Exception("[!] Train a model first, then run test mode") #抛出异常:请先训练模型再执行测试
      
        # to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0], #JSON格式化:w,b,gbn
        #                 [dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1],
        #                 [dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2],
        #                 [dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3],
        #                 [dcgan.h4_w, dcgan.h4_b, None])
        # Below is codes for visualization
        OPTION = 1
        visualize(sess, dcgan, FLAGS, OPTION) #执行可视化方法,传入会话、DCGAN、配置参数,选项
    if __name__ == '__main__': #如果直接执行本脚本文件,运行以下代码,一般作调试用。如果作为其它脚本模块引入,则不执行以下代码
      tf.app.run() #运行APP.run 解析FLAGS,执行main方法
欢迎付费咨询(150元每小时),我的微信:qingxingfengzi
我创建GAN日报群,以每天各报各的进度为主。把正在研究GAN的人聚在一起,互相鼓励,一起前进。加我微信拉群,请注明:加入GAN日报群。
学习笔记GAN004:DCGAN main.py的更多相关文章
- Hadoop源码学习笔记(2) ——进入main函数打印包信息
		Hadoop源码学习笔记(2) ——进入main函数打印包信息 找到了main函数,也建立了快速启动的方法,然后我们就进去看一看. 进入NameNode和DataNode的主函数后,发现形式差不多: ... 
- C# 动态生成word文档  [C#学习笔记3]关于Main(string[ ] args)中args命令行参数  实现DataTables搜索框查询结果高亮显示  二维码神器QRCoder  Asp.net MVC 中 CodeFirst 开发模式实例
		C# 动态生成word文档 本文以一个简单的小例子,简述利用C#语言开发word表格相关的知识,仅供学习分享使用,如有不足之处,还请指正. 在工程中引用word的动态库 在项目中,点击项目名称右键-- ... 
- 学习笔记GAN002:DCGAN
		Ian J. Goodfellow 论文:https://arxiv.org/abs/1406.2661 两个网络:G(Generator),生成网络,接收随机噪声Z,通过噪声生成样本,G(z).D( ... 
- [C#学习笔记3]关于Main(string[ ] args)中args命令行参数
		Main(string[] args)方法是C#程序的入口,程序从这里开始执行,在这里结束.C#代码逻辑要包含在一个类型(Type)中,游离的.全局的变量或函数是不存在的,这里的类型包括类(class ... 
- [Python学习笔记-006] 使用stomp.py校验JMS selector的正确性
		了解Jenkins的人都知道,JMS selector是基于SQL92语法实现的,本文将介绍使用stomp.py和ActiveMQ来校验JMS selector的正确性. Q: 什么是stomp.py ... 
- Hadoop源码学习笔记(1) ——第二季开始——找到Main函数及读一读Configure类
		Hadoop源码学习笔记(1) ——找到Main函数及读一读Configure类 前面在第一季中,我们简单地研究了下Hadoop是什么,怎么用.在这开源的大牛作品的诱惑下,接下来我们要研究一下它是如何 ... 
- 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL
		周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ... 
- Android自动化学习笔记之MonkeyRunner:官方介绍和简单实例
		---------------------------------------------------------------------------------------------------- ... 
- DBus学习笔记
		摘要:DBus作为一个轻量级的IPC被越来越多的平台接受,在MeeGo中DBus也是主要的进程间通信方式,这个笔记将从基本概念开始记录笔者学习DBus的过程 [1] DBus学习笔记一:DBus学习的 ... 
随机推荐
- SSE再学习:灵活运用SIMD指令6倍提升Sobel边缘检测的速度(4000*3000的24位图像时间由180ms降低到30ms)。
			这半年多时间,基本都在折腾一些基本的优化,有很多都是十几年前的技术了,从随大流的角度来考虑,研究这些东西在很多人看来是浪费时间了,即不能赚钱,也对工作能力提升无啥帮助.可我觉得人类所谓的幸福,可以分为 ... 
- [补档]暑假集训D2总结
			%dalao https://hzoi-mafia.github.io/2017/07/26/17/ (纪念我已死去的github) 大佬AntiLeaf来讲概率&期望,然后--成功变为 不可 ... 
- Python 实现排序算法
			排序算法 下面算法均是使用Python实现: 插入排序 原理:循环一次就移动一次元素到数组中正确的位置,通常使用在长度较小的数组的情况以及作为其它复杂排序算法的一部分,比如mergesort或quic ... 
- adb shell screenrecord命令行使用说明
			一.查看帮助命令,参数 --help D:\>adb shell screenrecord --help Usage: screenrecord [options] <filename&g ... 
- CentOS6 安装Sendmail + Dovecot + Roundcubemail
			前言 本文是继CentOS6 安装Sendmail + Dovecot + Squirrelmail 关于邮箱服务器配置的第二篇文章,因为关于使用Sendmail进行相关配置的文章.资料等太老,而且资 ... 
- C语言开篇
			Linux下使用最广泛的C/C++编译器是GCC,大多数的Linux发行版本都默认安装,不管是开发人员还是初学者,一般都将GCC作为Linux下首选的编译工具. 1.小程序test_gets.c #i ... 
- ESLint入门
			ESLint是一个用于识别和报告ECMAScript/JavaScript中代码格式的工具,目的是使代码风格更加统一和避免错误. 1.安装和使用有两种方式去安装ESLint:全局和本地. 1.1本地安 ... 
- RMAN备份介质的移动与再恢复测试 [ catalog start with ‘dir’ ]
			--RMAN备份介质的移动与再恢复测试 ---------------------------------------------------------2013/09/21 由于目前生产环境中没 ... 
- [Google Codejam] Round 1A 2016 - The Last Word
			[Problem Description] Problem On the game show The Last Word, the host begins a round by showing the ... 
- Selenium1 Selenium2 WebDriver
			1.Selenium 1 原理 (1).测试用例(Testcase)通过Client Lib的接口向Selenium Server发送Http请求,要求和Selenium Server建立连接. 为什 ... 
