An overnight dance in discotheque
time limit per test 2 seconds
memory limit per test 256 megabytes
input standard input
output standard output

The crowdedness of the discotheque would never stop our friends from having fun, but a bit more spaciousness won't hurt, will it?

The discotheque can be seen as an infinite xy-plane, in which there are a total of n dancers. Once someone starts moving around, they will move only inside their own movement range, which is a circular area Ci described by a center (xi, yi) and a radius ri. No two ranges' borders have more than one common point, that is for every pair (i, j) (1 ≤ i < j ≤ n) either ranges Ci and Cj are disjoint, or one of them is a subset of the other. Note that it's possible that two ranges' borders share a single common point, but no two dancers have exactly the same ranges.

Tsukihi, being one of them, defines the spaciousness to be the area covered by an odd number of movement ranges of dancers who are moving. An example is shown below, with shaded regions representing the spaciousness if everyone moves at the same time.

But no one keeps moving for the whole night after all, so the whole night's time is divided into two halves — before midnight and after midnight. Every dancer moves around in one half, while sitting down with friends in the other. The spaciousness of two halves are calculated separately and their sum should, of course, be as large as possible. The following figure shows an optimal solution to the example above.

By different plans of who dances in the first half and who does in the other, different sums of spaciousness over two halves are achieved. You are to find the largest achievable value of this sum.

Input

The first line of input contains a positive integer n (1 ≤ n ≤ 1 000) — the number of dancers.

The following n lines each describes a dancer: the i-th line among them contains three space-separated integers xiyi and ri( - 106 ≤ xi, yi ≤ 106, 1 ≤ ri ≤ 106), describing a circular movement range centered at (xi, yi) with radius ri.

Output

Output one decimal number — the largest achievable sum of spaciousness over two halves of the night.

The output is considered correct if it has a relative or absolute error of at most 10 - 9. Formally, let your answer be a, and the jury's answer be b. Your answer is considered correct if .

Examples
input
5
2 1 6
0 4 1
2 -1 3
1 -2 1
4 -1 1
output
138.23007676
input
8
0 0 1
0 0 2
0 0 3
0 0 4
0 0 5
0 0 6
0 0 7
0 0 8
output
289.02652413
Note

The first sample corresponds to the illustrations in the legend.

题解:

因为圆与圆之间只有两种关系,即相离和相包含,所以就可以根据是否相包含建立一棵树。

因为只有奇数部分才算宽敞度,所以自然就可以想到用0和1来表示在奇数层和偶数层。

又因为要将圆分成两个部分,综上所述,状态即为f[x][0/1][0/1]表示以x为根节点的树,x放在左边奇数层或偶数层和x放在右边奇数层或偶数层的最大值。

由于父子节点的层数相差一,所以从下到上动归的时候需要做一个异或运算。

代码如下:

#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#define pai (3.14159265358979323846)//像我这种辣鸡只会手打二十位的π
using namespace std;
int n,m;
int x[],y[],r[];
int father[];
long long f[][][];
struct node
{
int next,to;
}edge[];
int head[],size=;
void putin(int from,int to)
{
size++;
edge[size].to=to;
edge[size].next=head[from];
head[from]=size;
}
bool judge(int a,int b)
{
if((long long)(x[a]-x[b])*(x[a]-x[b])+(long long)(y[a]-y[b])*(y[a]-y[b])<=(long long)(r[a]-r[b])*(r[a]-r[b]))return ;
else return ;
}
void dfs(int x,int fa)
{
int i,j,k;
long long g[][]={};
for(i=head[x];i!=-;i=edge[i].next)
{
int y=edge[i].to;
if(y!=fa)
{
dfs(y,x);
for(j=;j<=;j++)
{
for(k=;k<=;k++)
{
g[j][k]+=f[y][j][k];
}
}
}
}
for(i=;i<=;i++)
{
for(j=;j<=;j++)
{
f[x][i][j]=max(g[i^][j]+(long long)r[x]*r[x]*(i==?():(-)),g[i][j^]+(long long)r[x]*r[x]*(j==?():(-)));
}
}
}
int main()
{
int i,j;
scanf("%d",&n);
memset(head,-,sizeof(head));
for(i=;i<=n;i++)
{
scanf("%d%d%d",&x[i],&y[i],&r[i]);
}
memset(father,-,sizeof(father));
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
if(i!=j&&r[i]<=r[j]&&judge(i,j))
{
if(father[i]==-||r[father[i]]>r[j])father[i]=j;
}
}
putin(father[i],i);
}
long long ans=;
for(i=;i<=n;i++)
{
if(father[i]==-)
{
dfs(i,-);
ans+=f[i][][];
}
}
printf("%.8lf",ans*pai);
return ;
}

An overnight dance in discotheque的更多相关文章

  1. Codeforces Round #418 (Div. 2) D. An overnight dance in discotheque

    Codeforces Round #418 (Div. 2) D. An overnight dance in discotheque 题意: 给\(n(n <= 1000)\)个圆,圆与圆之间 ...

  2. CodeForces 814D An overnight dance in discotheque(贪心+dfs)

    The crowdedness of the discotheque would never stop our friends from having fun, but a bit more spac ...

  3. codeforces 814D An overnight dance in discotheque

    题目链接 正解:贪心. 首先我们可以计算出每个圆被多少个圆覆盖. 很显然,最外面的圆是肯定要加上的. 然后第二层的圆也是要加上的.那么第三层就不可能被加上了.同理,第四层的圆又一定会被加上. 然后我们 ...

  4. CF#418 Div2 D. An overnight dance in discotheque

    一道树形dp裸体,自惭形秽没有想到 首先由于两两圆不能相交(可以相切)就决定了一个圆和外面一个圆的包含关系 又可以发现这样的树中,奇数深度的圆+S,偶数深度的圆-S 就可以用树形dp 我又写挫了= = ...

  5. An overnight dance in discotheque CodeForces - 814D (几何)

    大意: 给定n个不相交的圆, 求将n个圆划分成两部分, 使得阴影部分面积最大. 贪心, 考虑每个连通块, 最外层大圆分成一部分, 剩余分成一部分一定最优. #include <iostream& ...

  6. codeforces 814 D. An overnight dance in discotheque (贪心+bfs)

    题目链接:http://codeforces.com/contest/814/problem/D 题意:给出奇数个舞者,每个舞者都有中心坐标和行动半径,而且这些点组成的园要么相互包含要么没有交集求,讲 ...

  7. codeforces round 418 div2 补题 CF 814 A-E

    A An abandoned sentiment from past 水题 #include<bits/stdc++.h> using namespace std; int a[300], ...

  8. BZOJ 1305: [CQOI2009]dance跳舞 二分+最大流

    1305: [CQOI2009]dance跳舞 Description 一次舞会有n个男孩和n个女孩.每首曲子开始时,所有男孩和女孩恰好配成n对跳交谊舞.每个男孩都不会和同一个女孩跳两首(或更多)舞曲 ...

  9. Malek Dance Club(递推)

    Malek Dance Club time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

随机推荐

  1. C#基础之------委托

    一.委托的基本介绍 可以任务委托是持有一个或多个方法的对象.当然,正常情况下你不会去执行一个对象,但是委托与对象不同.可以执行委托,这是委托就会执行他所"持有"的方法. 举个栗子就 ...

  2. (知识点)JS获取网页高度

    网页可见区域的宽:document.body.clientWidth 网页可见区域的高:document.body.clientHeight 网页可见区域的宽:document.body.offset ...

  3. 博弈论(Game Theory) - 02 - 前传之重复剔除严格劣战略的占优战略均衡

    博弈论(Game Theory) - 02 - 前传之重复剔除严格劣战略的占优战略均衡 开始 "重复剔除劣战略的严格占优战略均衡"(iterated dominance equil ...

  4. hdu2594 Simpsons’ Hidden Talents

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2594 思路: 其实就是求相同的最长前缀与最长后缀 KMP算法的简单应用: 假设输入的两个字符串分别是s ...

  5. Vbs脚本实现radmin终极后门

    Vbs脚本实现radmin终极后门 代码如下: on error resume next const HKEY_LOCAL_MACHINE = &H80000002 strComputer = ...

  6. Java学习笔记——I/O流

    朝辞白帝彩云间,千里江陵一日还.两岸猿声啼不尽,轻舟已过万重山. --早发白帝城 我们老师写代码有个特点,就是简洁.每一句的意图都十分明确.所以他讲课的速度也比较快. 跑题了,说说I/O流: 1.字节 ...

  7. UML学习笔记之类之间的关系

    1.    导航关系(Directed Association) A类有一个成员变量保存B的引用. 2.包含关系(Aggregation.Composition) (1)弱包含 含义:每个部门包含多个 ...

  8. React入门---开始前的准备(上)-2

    开始前准备: 1.安装配置nodeJs(nodeJS官网) 检查安装成功: node -v npm -v 2.使用NPM配置React开发环境 (1). 创建项目文件夹(创建文件夹时,文件夹名不要起为 ...

  9. ASP.NET Core 菜鸟之路:从Startup.cs说起

    1.前言 本文主要是以Visual Studio 2017 默认的 WebApi 模板作为基架,基于Asp .Net Core 1.0,本文面向的是初学者,如果你有 ASP.NET Core 相关实践 ...

  10. 如何显示mnist中的数据(tensroflow)

      在使用mnist数据集的时候,一直想看看数据中原来的图片,还有卷积层.池化层中的图片,经过不断的捣鼓,最后终于显示了出来.只看数据集中的图片用如下代码就好了: import tensorflow. ...