Tarjan算法:求解图的割点与桥(割边)
简介:
割边和割点的定义仅限于无向图中。我们可以通过定义以蛮力方式求解出无向图的所有割点和割边,但这样的求解方式效率低。Tarjan提出了一种快速求解的方式,通过一次DFS就求解出图中所有的割点和割边。
欢迎探讨,如有错误敬请指正
如需转载,请注明出处 http://www.cnblogs.com/nullzx/
1. 割点与桥(割边)的定义
在无向图中才有割边和割点的定义
割点:无向连通图中,去掉一个顶点及和它相邻的所有边,图中的连通分量数增加,则该顶点称为割点。
桥(割边):无向联通图中,去掉一条边,图中的连通分量数增加,则这条边,称为桥或者割边。
割点与桥(割边)的关系:
1)有割点不一定有桥,有桥一定存在割点
2)桥一定是割点依附的边。
下图中顶点C为割点,但和C相连的边都不是桥。
2. 暴力解决办法解决求解割点集和割边集
暴力法的原理就是通过定义求解割点和割边。在图中去掉某个顶点,然后进行DFS遍历,如果连通分量增加,那么该顶点就是割点。如果在图中去掉某条边,然后进行DFS遍历,如果连通分量增加,那么该边就是割边。对每个顶点或者每个边进行一次上述操作,就可以求出这个图的所有割点和割边,我们称之为这个图的割点集和割边集。
在具体的代码实现中,并不需要真正删除该顶点和删除依附于该顶点所有边。对于割点,我们只需要在DFS前,将该顶点对应是否已访问的标记置为ture,然后从其它顶点为根进行DFS即可。对于割边,我们只需要禁止从这条边进行DFS后,如果联通分量增加了,那么这条边就是割边。
3. Tarjan算法的原理
判断一个顶点是不是割点除了从定义,还可以从DFS(深度优先遍历)的角度出发。我们先通过DFS定义两个概念。
假设DFS中我们从顶点U访问到了顶点V(此时顶点V还未被访问过),那么我们称顶点U为顶点V的父顶点,V为U的孩子顶点。在顶点U之前被访问过的顶点,我们就称之为U的祖先顶点。
显然如果顶点U的所有孩子顶点可以不通过父顶点U而访问到U的祖先顶点,那么说明此时去掉顶点U不影响图的连通性,U就不是割点。相反,如果顶点U至少存在一个孩子顶点,必须通过父顶点U才能访问到U的祖先顶点,那么去掉顶点U后,顶点U的祖先顶点和孩子顶点就不连通了,说明U是一个割点。
Tarjan算法:求解图的割点与桥(割边)的更多相关文章
- tarjan算法--求解无向图的割点和桥
1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥 也就是说 无向连通图中,如果删除某边后,图变成不连通,则称该边为桥 2.割点:无向连通图中,如 ...
- tarjan算法--求无向图的割点和桥
一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不连通,则称该边为桥. 2.割点:无向连通图中 ...
- Tarjan算法初探(3):求割点与桥以及双连通分量
接上一节Tarjan算法初探(2):缩点 在此首先提出几个概念: 割点集合:一个无向连通图G 若删除它的一个点集 以及点集中所有点相连的边(任意一端在点集中)后 G中有点之间不再连通则称这个点集是它的 ...
- Tarjan无向图的割点和桥(割边)全网详解&算法笔记&通俗易懂
更好的阅读体验&惊喜&原文链接 感谢@yxc的腿部挂件 大佬,指出本文不够严谨的地方,万分感谢! Tarjan无向图的割点和桥(割边) 导言 在掌握这个算法前,咱们有几个先决条件. [ ...
- Tarjan算法求解桥和边双连通分量(附POJ 3352 Road Construction解题报告)
http://blog.csdn.net/geniusluzh/article/details/6619575 在说Tarjan算法解决桥和边双连通分量问题之前我们先来回顾一下Tarjan算法是如何 ...
- TarJan 算法求解有向连通图强连通分量
[有向图强连通分量] 在有向图G中,如果两个 顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的 ...
- 20行代码实现,使用Tarjan算法求解强连通分量
今天是算法数据结构专题的第36篇文章,我们一起来继续聊聊强连通分量分解的算法. 在上一篇文章当中我们分享了强连通分量分解的一个经典算法Kosaraju算法,它的核心原理是通过将图翻转,以及两次递归来实 ...
- Tarjan算法求解无向连通图的割点、割边、点双连通分量和边双连通分量的模板
历时好几天,终于完工了! 支持无向图四种功能:1.割点的求解 2.割边的求解 3.点双连通分量的求解 4.边双连通分量的求解 全部支持重边!!!!全部支持重边!!!!全部支持重边!!!! 测试数据: ...
- python利用dijkstra算法求解图中最短距离
利用dijkstra算法,来完成图中两个顶点间最短的距离,可以直接复制使用,只需要修改参数即可 def dijkstra_raw(edges, from_node, to_node): "& ...
随机推荐
- 《剑指Offer》附加题_用两个队列实现一个栈_C++版
在<剑指Offer>中,在栈和队列习题中,作者留下来一道题目供读者自己实现,即"用两个队列实现一个栈". 在计算机数据结构中,栈的特点是后进先出,即最后被压入(push ...
- HTML5-前端开发很火且工资很高?
前言 晚上逛论坛看到一篇对从事HTML5前端开发的文章写的非常不错,和目前的市场形势差不多,然后我在其基础上给大家进行加工总结一下分享给大家.今天我们谈论的话题是<<为什么从事HTML5前 ...
- 【ASP.NET MVC 学习笔记】- 06 在MVC中使用Ninject
本文参考:http://www.cnblogs.com/willick/p/3299077.html 1.在ASP.NET MVC中一个客户端请求是在特定的Controller的Action中处理的. ...
- LeetCode 79. Word Search(单词搜索)
Given a 2D board and a word, find if the word exists in the grid. The word can be constructed from l ...
- 面试中常用排序算法实现(Java)
当我们进行数据处理的时候,往往需要对数据进行查找操作,一个有序的数据集往往能够在高效的查找算法下快速得到结果.所以排序的效率就会显的十分重要,本篇我们将着重的介绍几个常见的排序算法,涉及如下内容: 排 ...
- :after伪类+content内容生成
:after伪类+content 清除浮动的影响 浮动元素会让此div的高度塌陷.如下例子: .box{padding:10px; background:gray;} .l{float:left;} ...
- margin负值的相关应用
1.页面上实现css sprite背景定位效果 其实margin:-40px 0 0 -160px;与background-position:-160px -40px;实现的原理是一致的,而差别就 ...
- (转)微信开发连接SAE数据库
原文地址:http://blog.csdn.net/tterminator/article/details/51067130 在读写云数据库MySQL之前,需要说明的是,在新浪云平台上使用数据库时,该 ...
- 使用Identity Server 4建立Authorization Server (5)
预备知识: http://www.cnblogs.com/cgzl/p/7746496.html 第一部分: http://www.cnblogs.com/cgzl/p/7780559.html 第二 ...
- EasyWcf------无需配置,无需引用,动态绑定,轻松使用
设计原则:万物皆对象 前言:在上一篇的0配置使用Wcf中,虽然使用已经很方便了,但是对于最求极致简洁得人来说(比如我),客户端需要通过手动引用服务才能够调用服务接口,那么有没有办法能够绕过手动引用这一 ...