51Nod 1509加长棒
传送门 http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1509
现在有三根木棒,他们的长度分别是a,b,c厘米。你可以对他们进行加长(不同的木棒可以增加不同的长度),他们总的加长长度不能超过L厘米。你也可以不对他们进行加长。
现在请你计算一下有多少种加长的方式使得他们能构成合法的三角形(面积非0)。
单组测试数据。
共一行,包含4 个整数a,b,c,L (1≤a,b,c≤3*10^5, 0≤L≤3*10^5)。
输出答案占一行。
1 1 1 2
4
这个题我被坑了很久,搞了2.5小时以上了才AC,不过AC的时候真TM爽!(然而岑神几分钟就做对了ORZ)其实很早就有思路了,但是计算的公式疏忽了好几个地方,最后还是下载了部分数据才过的
办法是枚举加长a的量(设其为i),剩余的可用长度为w,很容易得出在不考虑构成三角形的情况下,总共有(w+1)*(w+2)/2种方案,如果减去其中不合法的种数就是a加长量为i的时候的合法方案数了。
不合法的方案有3种,a太长,b太长,c太长(这里说的a,b,c是已经加长后的长度)
针对a太长,我们设x=min(w,a+i-b-c),换句话讲,就是即使给b,c加上共计为x的长度,依然不合法,这种情况数为(x+2)*(x+1)/2
针对b太长或者c太长,其实这两种情况是差不多的,我们设x=w+b-a-c-i(b太长),x=w+c-a-b-i(c太长),思路是先假设b被加到了b+w,然后减掉b中的一部分,把那一部分中的一部分加到c上
然后分三种情况讨论
情况一.w<=x/2 也就是就算把原来加到b上去的长度全卸下来,并且全加到c上去,b还是太长,那么这里的操作是ans-=(1+w)*(w+2)/2;
情况二.w>=x 这种情况下w不会限制我们把b的一部分长度卸下来,操作是ans-=(2+x/2)*(1+x/2)/2,ans-=(x-x/2)*(1+x-x/2)/2;
情况三.x/2<w<x 这种情况下w会限制我们把b的一部分长度卸下来,操作是ans-=(2+x/2)*(1+x/2)/2,ans-=(w-x/2)*(x-x/2+x-w+1)/2;
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<vector>
#include<queue>
using namespace std;
typedef long long ll;
int main()
{
ll i,j;
ll a,b,c,L;
scanf("%lld%lld%lld%lld",&a,&b,&c,&L);
ll ans=;
if(a+b+L<=c||a+c+L<=b||b+c+L<=a)
{
printf("0\n");
return ;
}
for(i=;i<=L;i++)
{
ll w=L-i;
if(a+i>=b+c+w)break;
ans+=(w+)*(w+)/;//√
if(a+i>=b+c)
{
ll x=min(a-b-c+i,w);
ans-=(x+)*(x+)/;//√
}
if(w+b>=a+c+i)
{
ll x=w+b-a-c-i;
if(x<=w)
{
ans-=(+x/)*(+x/)/;
ans-=(x-x/)*(+x-x/)/;
}
else if(w<x)
{
if(w<=x/)
{
ans-=(+w)*(w+)/;
}
else
{
ans-=(+x/)*(+x/)/;
ans-=(w-x/)*(x-x/+x-w+)/;
}
}
}
if(w+c>=a+b+i)
{
ll x=w+c-a-b-i;
if(x<=w)
{
ans-=(+x/)*(+x/)/;
ans-=(x-x/)*(+x-x/)/;
}
else if(w<x)
{
if(w<=x/)
{
ans-=(+w)*(w+)/;
}
else
{
ans-=(+x/)*(+x/)/;
ans-=(w-x/)*(x-x/+x-w+)/;
}
}
}
}
printf("%lld\n",ans);
return ;
}
/*
17 28 19 5558
*/
/*
7396315389 */
/*
100000 300000 100000 100003
*/
/*
400012
*/
51Nod 1509加长棒的更多相关文章
- 51Nod 1509 加长棒(隔板法)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1509 思路: 直接去解可行的方法有点麻烦,所以应该用总的方法去减去不可行 ...
- 51 Nod 1509 加长棒(巧妙的隔板法计数)
1509 加长棒 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 现在有三根木棒,他们的长度分别是a,b,c厘米 ...
- Good Vegetable 4级算法题 分值: [320/3120] 问题: [8/78]
1523 非回文 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 一个字符串是非回文的,当且仅当,他只由前p个小写字母 ...
- 【题解】51nod 1203JZPLCM问题
这题好强强啊,貌似是集训队原题?集训队原题当中值域是1e9的范围,这样各种乱搞是妥妥的不能过了,只能写正解的离线+树状数组维护前缀积. 最开始我写了几种乱搞做法,包括莫队和线段树做法.其中表现比较优秀 ...
- 51nod 1402 最大值(贪心)
原题链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1402 思路:借鉴了这篇博文http://blog.csdn.n ...
- 8个超棒的HTML5网站设计欣赏
我们听到了很多关于HTML5的新闻和技术动向,一个又一个的新的东西不停的出现,那么最近HTML5的技术应用又如何呢?HTML5又和CSS及其Javascript如何一起改变我们的网站设计和实现的呢? ...
- 【51Nod 1244】莫比乌斯函数之和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...
- 51Nod 1268 和为K的组合
51Nod 1268 和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...
- 51Nod 1428 活动安排问题
51Nod 1428 活动安排问题 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1428 1428 活 ...
随机推荐
- org.apache.commons.lang下的工具类
1.org.apache.commons.lang.ArrayUtils 例子 package chongqingyusp; import java.util.Map; import org.apac ...
- linux命令11
tar命令的使用 tar文件是把几个文件的(或)目录集合在一个文件夹里,是创建备份和归档的最佳工具. [root@localhost ~]# tar --help用法: tar [选项...] [FI ...
- canvas动画——粒子系统(1)
这个动画在很早之前就见过,当时就没迷住了.最近在学canavs动画,动手实现了一下.代码在这里.展示效果在这里. 这属于粒子系统的一种,粒子系统就是需要管理一堆粒子嘛,动画实现的关键在于,遍历这些粒子 ...
- Range Modular Queries
Range Modular Queries 题意 给出一个数列,q个查询,问查询区间内有几个数 a[i] % x == y. 分析 其实裸的分块就能过了,跑的还特别快. 这里分块的作用就是排序. 在x ...
- Sql的连接表补充
连接条件可在FROM或WHERE子句中指定,建议在FROM子句中指定连接条件.WHERE和HAVING子句也可以包含搜索条件,以进一步筛选连接条件所选的行. 连接可分为 ...
- socket获取百度页面
import java.io.BufferedReader;import java.io.IOException;import java.io.InputStreamReader;import jav ...
- iOS 手势
一.看这里 二.抽象类 UIGestureRecognizer 继承于该类的有7类:轻点,捏合,拖拽,滑动,长按,旋转,边缘滑动; 一个手势可以绑定多个事件 - (void)addTarget:( ...
- 用java实现简单快速的webservice客户端/数据采集器(支持soap1.1和soap1.2标准,支持utf-8编码)
前言: 用了cxf,axis等各种wbeservice实现库,简单试用了一下动态调用的方式,很不满意,完全无法满足业务的需要,所以自己实现了一个webservice采集客户端,方便动态调用外部webs ...
- NodeMCU入门(5):Docker Image 构建固件,开启SmartConfig
准备工作 1.NodeMCU模块 2.ESP8266Flasher.exe 3.EspTouch.apk 3.docker toolbox(win7系统) 或 docker(win10以上),本教程是 ...
- 给Linux系统/网络管理员准备的Nmap命令的29个实用范例
我将用两个不同的部分来涵盖大部分NMAP的使用方法,这是nmap关键的第一部分.在下面的设置中,我使用两台已关闭防火墙的服务器来测试Nmap命令的工作情况. 192.168.0.100 – serve ...