题目描述

设 T 为一棵有根树,我们做如下的定义:

    • 设 a 和 b 为 T 中的两个不同节点。如果 a 是 b 的祖先,那么称 “ a 比 b 不知道高明到哪里去了 ” 。
    • 设 a 和 b 为 T 中的两个不同节点。如果 a 与 b 在树上的距离不超过某个给定常数 x ,那么称 “ a 与 b 谈笑风生 ” 。

给定一棵 n 个节点的有根树 T ,节点的编号为 1~n ,根节点为 1 号节点。你需要回答 q 个询问,询问给定两个整数 p 和 k ,问有多少个有序三元组 (a,b,c) 满足:
1. a、b 和 c 为 T 中三个不同的点,且 a 为 p 号节点;
2. a 和 b 都比 c 不知道高明到哪里去了; 
3. a 和 b 谈笑风生。这里谈笑风生中的常数为给定的 k 。

输入格式

输入的第一行含有两个正整数n和q,分别代表有根树的点数与询问的个数。
接下来 n-1 行,每行描述一条树上的边。每行含有两个整数 u 和 v ,代表在节点 u 和 v 之间有一条边。
接下来 q 行,每行描述一个操作。第 i 行含有两个整数,分别表示第 i 个询问的 p 和 k 。

输出格式

输出 q 行,每行对应一个询问,代表询问的答案。

样例输入

5 3 
1 2 
1 3 
2 4 
4 5 
2 2 
4 1 
2 3

样例输出



3

题目分析

下图是样例数据:

  对于询问2 2, b可以取1或4

  •   b取1时, c可以取4, 5:

ans += 1 * 2

  • b取4时, c只能取5:

ans += 1 * 1

  • 综上ans = 3
  • 可以发现对于询问a,k: 若根节点的dep为0, sze[i]表示以i为根的树的大小
  1. b可以在根节点到a的路径上,此时c可以是a子树中的任意节点 ans += min(dep[a], k) * (sze[a] - 1)
  2. b可以是a的子树节点中且与a的距离小于等于k, 对于每一个b, c可以是b子树结点中的任意一点

$$ans += \sum_{b} sze[b] - 1$$

  • 由此, 先dfs出树的dep,sze

  然后需要加上a子树结点中与a距离小于等于k的节点的子树大小之和.

  • 我们可以使用可持久化线段树来完成这一任务。我们对深度建线段树,按照 DFS 序的
    顺序依次插入每个点。这样就可以通过全部的测试点。
  • 具体可以看代码;

CODE:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
using namespace std; typedef long long ll;
const int N = ;
int n, q;
#define bug(x) cout<<#x<<":"<<x<<endl inline int Re(){
int i = , f = ; char ch = getchar();
for(; (ch < '' || ch > '') && ch != '-'; ch = getchar());
if(ch == '-') f = -, ch = getchar();
for(; ch >= '' && ch <= ''; ch = getchar())
i = (i << ) + (i << ) + (ch - '');
return i * f;
} struct node{
int lc, rc;
ll sum;
}tr[N << ];
int pool, root[N], sze[N], dep[N], in[N], out[N], id; int ecnt, adj[N], go[N << ], nxt[N << ], maxx, pos[N]; inline void Insert(const int &x, int &y, const int &l, const int &r, const int &pos, const int &v){
tr[y = ++pool] = tr[x];
tr[y].sum += v;
if(l == r) return;
int mid = l + r >> ;
if(pos <= mid) Insert(tr[x].lc, tr[y].lc, l, mid, pos, v);
else Insert(tr[x].rc, tr[y].rc, mid + , r, pos, v);
} inline ll query(int pos, const int &nl, const int &nr, const int &l, const int &r){
if(l <= nl && nr <= r) return tr[pos].sum;
int mid = nl + nr >> ;
ll ret = ;
if(l <= mid) ret += query(tr[pos].lc, nl, mid, l, r);
if(r > mid ) ret += query(tr[pos].rc, mid + , nr, l, r);
return ret;
} inline void addEdge(const int &u, const int &v){
nxt[++ecnt] = adj[u], adj[u] = ecnt, go[ecnt] = v;
nxt[++ecnt] = adj[v], adj[v] = ecnt, go[ecnt] = u;
} inline void dfs(const int &u, const int &f){
dep[u] = dep[f] + ;
maxx = max(maxx, dep[u]);
sze[u] = ;
in[u] = ++id;
pos[id] = u;
int v;
for(int e = adj[u]; e; e = nxt[e]){
if((v = go[e]) == f) continue;
dfs(v, u);
sze[u] += sze[v];
}
out[u] = id;
} inline void tree_init(){
for(int i = ; i <= n; i++){
Insert(root[i - ], root[i], , maxx, dep[pos[i]], sze[pos[i]] - );
}
} int main(){
freopen("h.in", "r", stdin);
n = Re(), q = Re();
for(int i = ; i < n; i++){
int u = Re(), v = Re();
addEdge(u, v);
}
maxx = -; dep[] = -;
dfs(, );
tree_init();
// for(int i = 1; i <= n; i++) bug(i),bug(dep[pos[i]]);
for(int i = ; i <= q; i++){
int p = Re();
int k = Re();
ll ans = ;
ans += (ll)(sze[p] - ) * (ll)min(dep[p], k);
// bug(ans);
ans += query(root[out[p]], , maxx, min(dep[p] + , maxx), min(dep[p] + k, maxx));
// bug(ans); bug(query(root[out[p]], 1, maxx, min(dep[p] + 1, maxx), min(dep[p] + k, maxx)));
ans -= query(root[in[p] - ], , maxx, min(dep[p] + , maxx), min(dep[p] + k, maxx));
cout<<ans<<endl;
}
return ;
}

【NOI模拟】谈笑风生(主席树)的更多相关文章

  1. bzoj 3653 谈笑风生——主席树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3653 原来一直想怎么线段树合并.可是不会把角标挪一位. 查询的其实是子树内一段深度的点的 s ...

  2. bzoj 3653 谈笑风生 —— 主席树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3653 对于一个 (a,b,c),分成 b 是 a 的祖先和 b 在 a 子树里两部分: 第一 ...

  3. [BZOJ3653]谈笑风生 主席树

    题面 这道题应该比较裸吧. \(a\),\(b\)都是\(c\)的祖先. 那么第一种情况是\(b\)是\(a\)的祖先,那么方案数就是\(\min\{dep[a]-1,k\}\cdot (num[a] ...

  4. BZOJ 3653: 谈笑风生(主席树)

    传送门 解题思路 首先对于一个\(a\)来说,要求\(b\)和\(c\),那么\(a,b,c\)一定在一条链上.把\(b\)分类讨论,如果\(b\)是\(a\)的祖宗,这个方案数就很好统计了,就是\( ...

  5. P3899 [湖南集训]谈笑风生 主席树

    #include<iostream> #include<string.h> #include<algorithm> #include<stdio.h> ...

  6. [Luogu P3899] [湖南集训]谈笑风生 (主席树)

    题面 传送门:https://www.luogu.org/problemnew/show/P3899 Solution 你们搞的这道题啊,excited! 这题真的很有意思. 首先,我们可以先理解一下 ...

  7. Newnode's NOI(P?)模拟赛 第三题 (主席树优化建图 + tarjan)

    题目/题解戳这里 这道题题目保证a,b,ca,b,ca,b,c各是一个排列-mdzz考场上想到正解但是没看到是排列,相等的情况想了半天-然后写了暴力60分走人- 由于两两间关系一定,那么就是一个竞赛图 ...

  8. 数据结构(主席树):COGS 2211. 谈笑风生

    2211. 谈笑风生 ★★★★   输入文件:laugh.in   输出文件:laugh.out   简单对比时间限制:3 s   内存限制:512 MB [问题描述] 设T 为一棵有根树,我们做如下 ...

  9. 主席树 || 可持久化线段树 || BZOJ 3653: 谈笑风生 || Luogu P3899 [湖南集训]谈笑风生

    题面:P3899 [湖南集训]谈笑风生 题解: 我很喜欢这道题. 因为A是给定的,所以实质是求二元组的个数.我们以A(即给定的P)作为基点寻找答案,那么情况分两类.一种是B为A的父亲,另一种是A为B的 ...

随机推荐

  1. XOR 加密简介

    本文介绍一种简单高效.非常安全的加密方法:XOR 加密. 一. XOR 运算 逻辑运算之中,除了 AND 和 OR,还有一种 XOR 运算,中文称为"异或运算". 它的定义是:两个 ...

  2. 为什么使用dojo?dojo与jquery有什么不同?dojo适合什么开发场景?

    首先介绍一下dojo的特性: 1.Dojo是一个符合AMD规范的企业级框架(dojo是一个重量级框架) 2.Dojo全面支持异步加载JS机制(即:支持通过require异步加载JS模块,通过defin ...

  3. python面向对象的编程

    self相当于在实例化类的过程中传入参数,实例化对象本身 静态方法,静态字段属于类,动态字段,动态方法输入每一个实例化的对象 类实例化的过程把一些属性,方法封装到一个实例化对象当中 动态字段,动态方法 ...

  4. jQuery 插件 的this 指向问题(实战)

    daterangepicker 是一个JavaScript组件,用来选择日期. 资源直接搜索 daterangepicker 即可,当然好看的样式可以基于Bootstrap. 官网:http://ww ...

  5. ionic 中关于日期的转换格式

    //在HTML页面上{{ 2015-12-07T15:59:59.000Z | date }} //结果:December 7, 2015 {{ 2015-12-07T15:59:59.000Z | ...

  6. Java线程池入门必备

    线程池 一. 线程池的简介 1.什么是线程池?   最早期的工作线程处理任务的模型.一个任务的到来,会伴随着线程的创建,当处理完任务后,线程会被销毁,资源回收.这种一个任务一个线程一系列创建销毁的模式 ...

  7. Qt使用MySQL笔记一

    原始日期:2015-08-20 18:01 今天开发项目时,遇到一个问题,经过自己不断尝试,终于找到了解决办法,于是赶紧记下来,不然过段时间可能又忘了呵呵,从而重蹈覆辙,浪费时间~问题是这样的:在插入 ...

  8. zend framework 1 安装教程

    网上的安装教程总是一笔带过,本人结合已经爬过的坑,为大家展示最简单的安装方式: 博主环境如下: 操作系统:win7 64bit 开发环境:lnmp(phpstudy) 注意: zftest:官方下载的 ...

  9. 2.如何修改apache的默认端口

    打开apache的conf文件夹,找到server.xml,修改里面这段的port即可,重启apache,修改成功

  10. ASP.NET MVC5+EF6+EasyUI 后台管理系统(85)-Quartz 作业调度用法详解二

    前言 上一节我们学习了Quartz的基本用法 这一节学习通过XML配置的形式来执行任务 这一节主要认识一些属性,为下一步打基础 代码下载:链接:http://pan.baidu.com/s/1ge6j ...