题目描述

设 T 为一棵有根树,我们做如下的定义:

    • 设 a 和 b 为 T 中的两个不同节点。如果 a 是 b 的祖先,那么称 “ a 比 b 不知道高明到哪里去了 ” 。
    • 设 a 和 b 为 T 中的两个不同节点。如果 a 与 b 在树上的距离不超过某个给定常数 x ,那么称 “ a 与 b 谈笑风生 ” 。

给定一棵 n 个节点的有根树 T ,节点的编号为 1~n ,根节点为 1 号节点。你需要回答 q 个询问,询问给定两个整数 p 和 k ,问有多少个有序三元组 (a,b,c) 满足:
1. a、b 和 c 为 T 中三个不同的点,且 a 为 p 号节点;
2. a 和 b 都比 c 不知道高明到哪里去了; 
3. a 和 b 谈笑风生。这里谈笑风生中的常数为给定的 k 。

输入格式

输入的第一行含有两个正整数n和q,分别代表有根树的点数与询问的个数。
接下来 n-1 行,每行描述一条树上的边。每行含有两个整数 u 和 v ,代表在节点 u 和 v 之间有一条边。
接下来 q 行,每行描述一个操作。第 i 行含有两个整数,分别表示第 i 个询问的 p 和 k 。

输出格式

输出 q 行,每行对应一个询问,代表询问的答案。

样例输入

5 3 
1 2 
1 3 
2 4 
4 5 
2 2 
4 1 
2 3

样例输出



3

题目分析

下图是样例数据:

  对于询问2 2, b可以取1或4

  •   b取1时, c可以取4, 5:

ans += 1 * 2

  • b取4时, c只能取5:

ans += 1 * 1

  • 综上ans = 3
  • 可以发现对于询问a,k: 若根节点的dep为0, sze[i]表示以i为根的树的大小
  1. b可以在根节点到a的路径上,此时c可以是a子树中的任意节点 ans += min(dep[a], k) * (sze[a] - 1)
  2. b可以是a的子树节点中且与a的距离小于等于k, 对于每一个b, c可以是b子树结点中的任意一点

$$ans += \sum_{b} sze[b] - 1$$

  • 由此, 先dfs出树的dep,sze

  然后需要加上a子树结点中与a距离小于等于k的节点的子树大小之和.

  • 我们可以使用可持久化线段树来完成这一任务。我们对深度建线段树,按照 DFS 序的
    顺序依次插入每个点。这样就可以通过全部的测试点。
  • 具体可以看代码;

CODE:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
using namespace std; typedef long long ll;
const int N = ;
int n, q;
#define bug(x) cout<<#x<<":"<<x<<endl inline int Re(){
int i = , f = ; char ch = getchar();
for(; (ch < '' || ch > '') && ch != '-'; ch = getchar());
if(ch == '-') f = -, ch = getchar();
for(; ch >= '' && ch <= ''; ch = getchar())
i = (i << ) + (i << ) + (ch - '');
return i * f;
} struct node{
int lc, rc;
ll sum;
}tr[N << ];
int pool, root[N], sze[N], dep[N], in[N], out[N], id; int ecnt, adj[N], go[N << ], nxt[N << ], maxx, pos[N]; inline void Insert(const int &x, int &y, const int &l, const int &r, const int &pos, const int &v){
tr[y = ++pool] = tr[x];
tr[y].sum += v;
if(l == r) return;
int mid = l + r >> ;
if(pos <= mid) Insert(tr[x].lc, tr[y].lc, l, mid, pos, v);
else Insert(tr[x].rc, tr[y].rc, mid + , r, pos, v);
} inline ll query(int pos, const int &nl, const int &nr, const int &l, const int &r){
if(l <= nl && nr <= r) return tr[pos].sum;
int mid = nl + nr >> ;
ll ret = ;
if(l <= mid) ret += query(tr[pos].lc, nl, mid, l, r);
if(r > mid ) ret += query(tr[pos].rc, mid + , nr, l, r);
return ret;
} inline void addEdge(const int &u, const int &v){
nxt[++ecnt] = adj[u], adj[u] = ecnt, go[ecnt] = v;
nxt[++ecnt] = adj[v], adj[v] = ecnt, go[ecnt] = u;
} inline void dfs(const int &u, const int &f){
dep[u] = dep[f] + ;
maxx = max(maxx, dep[u]);
sze[u] = ;
in[u] = ++id;
pos[id] = u;
int v;
for(int e = adj[u]; e; e = nxt[e]){
if((v = go[e]) == f) continue;
dfs(v, u);
sze[u] += sze[v];
}
out[u] = id;
} inline void tree_init(){
for(int i = ; i <= n; i++){
Insert(root[i - ], root[i], , maxx, dep[pos[i]], sze[pos[i]] - );
}
} int main(){
freopen("h.in", "r", stdin);
n = Re(), q = Re();
for(int i = ; i < n; i++){
int u = Re(), v = Re();
addEdge(u, v);
}
maxx = -; dep[] = -;
dfs(, );
tree_init();
// for(int i = 1; i <= n; i++) bug(i),bug(dep[pos[i]]);
for(int i = ; i <= q; i++){
int p = Re();
int k = Re();
ll ans = ;
ans += (ll)(sze[p] - ) * (ll)min(dep[p], k);
// bug(ans);
ans += query(root[out[p]], , maxx, min(dep[p] + , maxx), min(dep[p] + k, maxx));
// bug(ans); bug(query(root[out[p]], 1, maxx, min(dep[p] + 1, maxx), min(dep[p] + k, maxx)));
ans -= query(root[in[p] - ], , maxx, min(dep[p] + , maxx), min(dep[p] + k, maxx));
cout<<ans<<endl;
}
return ;
}

【NOI模拟】谈笑风生(主席树)的更多相关文章

  1. bzoj 3653 谈笑风生——主席树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3653 原来一直想怎么线段树合并.可是不会把角标挪一位. 查询的其实是子树内一段深度的点的 s ...

  2. bzoj 3653 谈笑风生 —— 主席树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3653 对于一个 (a,b,c),分成 b 是 a 的祖先和 b 在 a 子树里两部分: 第一 ...

  3. [BZOJ3653]谈笑风生 主席树

    题面 这道题应该比较裸吧. \(a\),\(b\)都是\(c\)的祖先. 那么第一种情况是\(b\)是\(a\)的祖先,那么方案数就是\(\min\{dep[a]-1,k\}\cdot (num[a] ...

  4. BZOJ 3653: 谈笑风生(主席树)

    传送门 解题思路 首先对于一个\(a\)来说,要求\(b\)和\(c\),那么\(a,b,c\)一定在一条链上.把\(b\)分类讨论,如果\(b\)是\(a\)的祖宗,这个方案数就很好统计了,就是\( ...

  5. P3899 [湖南集训]谈笑风生 主席树

    #include<iostream> #include<string.h> #include<algorithm> #include<stdio.h> ...

  6. [Luogu P3899] [湖南集训]谈笑风生 (主席树)

    题面 传送门:https://www.luogu.org/problemnew/show/P3899 Solution 你们搞的这道题啊,excited! 这题真的很有意思. 首先,我们可以先理解一下 ...

  7. Newnode's NOI(P?)模拟赛 第三题 (主席树优化建图 + tarjan)

    题目/题解戳这里 这道题题目保证a,b,ca,b,ca,b,c各是一个排列-mdzz考场上想到正解但是没看到是排列,相等的情况想了半天-然后写了暴力60分走人- 由于两两间关系一定,那么就是一个竞赛图 ...

  8. 数据结构(主席树):COGS 2211. 谈笑风生

    2211. 谈笑风生 ★★★★   输入文件:laugh.in   输出文件:laugh.out   简单对比时间限制:3 s   内存限制:512 MB [问题描述] 设T 为一棵有根树,我们做如下 ...

  9. 主席树 || 可持久化线段树 || BZOJ 3653: 谈笑风生 || Luogu P3899 [湖南集训]谈笑风生

    题面:P3899 [湖南集训]谈笑风生 题解: 我很喜欢这道题. 因为A是给定的,所以实质是求二元组的个数.我们以A(即给定的P)作为基点寻找答案,那么情况分两类.一种是B为A的父亲,另一种是A为B的 ...

随机推荐

  1. Laravel项目修改时区

    Laravel项目修改时区 最近做了一个支付宝支付的应用,现在还在开发过程中,今天早上起床之后先调试了一下项目,模拟支付了一笔(¥9999.00) 2333支付宝的沙箱环境啦,屌丝程序猿哪来这么多钱- ...

  2. Centos 执行shell命令返回127错误

    shell脚本功能:连接mysql,自动创建数据库,脚本如下 mysql -h$MYSQL_IP -u$MYSQL_USER -p$MYSQL_PASSWORD --default-character ...

  3. mailto调用本地默认客户端发邮件

    下面介绍如何利用 Mailto功能: 实现 Mailto的基本html代码: <a href="mailto:123@qq.com">点击这里发邮件!</a> ...

  4. win8安装sql2008及设置登陆名问题

    1. .net3.5安装        使用win8系统自带的升级功能无法成功安装.其实Windows8安装文件中已经集了.Net3.5,       (1)此时只需要使用虚拟光驱加载Windows8 ...

  5. [UWP]用Shape做动画(2):使用与扩展PointAnimation

    上一篇几乎都在说DoubleAnimation的应用,这篇说说PointAnimation. 1. 使用PointAnimation 使用PointAnimation可以让Shape变形,但实际上没看 ...

  6. ecshop广告分析

    ecshop模板中,显示广告的库项目是ad_position.lbi,其内容只有一个语句: {insert name='ads' id=$ads_id num=$ads_num} smarty的ins ...

  7. 读Zepto源码之属性操作

    这篇依然是跟 dom 相关的方法,侧重点是操作属性的方法. 读Zepto源码系列文章已经放到了github上,欢迎star: reading-zepto 源码版本 本文阅读的源码为 zepto1.2. ...

  8. 大话Python正则表达式

    python的正则表达式模块re import re match_object=re.compile(r"") result=re.match(match_object," ...

  9. PHP+MySql实现后台数据的读取

      我们使用的是PHP 的php_mysqli扩展   首先了解一些基础的用法  1.连接数据库使用 mysqli_connect()  参数:①主机地址 ②MYSQL用户名 ③MYSQL密码 ④选择 ...

  10. HBuilder使用方法

    /*注:本教程针对HBuilder5.0.0,制作日期2014-12-31*/创建HTML结构: h 8 (敲h激活代码块列表,按8选择第8个项目,即HTML代码块,或者敲h t Enter)中途换行 ...