Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,近期研究了机器学习中一些深度学习的相关知识,本文给出一些非常实用的资料和心得。

Key Words:有监督学习与无监督学习。分类、回归。密度预计、聚类,深度学习,Sparse DBN,

1. 有监督学习和无监督学习

给定一组数据(input,target)为Z=(X,Y)。

有监督学习:最常见的是regression & classification。

regression:Y是实数vector。回归问题,就是拟合(X。Y)的一条曲线,使得下式cost function L最小。

classification:Y是一个finite number,能够看做类标号。分类问题须要首先给定有label的数据训练分类器,故属于有监督学习过程。分类问题中,cost function L(X,Y)是X属于类Y的概率的负对数。

。当中fi(X)=P(Y=i
| X);

无监督学习:无监督学习的目的是学习一个function f,使它能够描写叙述给定数据的位置分布P(Z)。 包含两种:density
estimation & clustering.

density estimation就是密度预计,预计该数据在任何位置的分布密度

clustering就是聚类。将Z聚集几类(如K-Means),或者给出一个样本属于每一类的概率。

因为不须要事先依据训练数据去train聚类器。故属于无监督学习。

PCA和非常多deep learning算法都属于无监督学习。

2. 深度学习Deep Learning介绍

Depth 概念:depth:
the length of the longest path from an input to an output.

Deep Architecture 的三个特点:深度不足会出现故障;人脑具有一个深度结构(每深入一层进行一次abstraction,由lower-layer的features描写叙述而成的feature构成,就是上篇中提到的feature
hierarchy问题
,并且该hierarchy是一个稀疏矩阵);认知过程逐层进行。逐步抽象

3篇文章介绍Deep
Belief Networks,作为DBN的breakthrough

3.Deep Learning Algorithm 的核心思想:

把learning hierarchy 看做一个network。则

①无监督学习用于每一层网络的pre-train。

②每次用无监督学习仅仅训练一层,将其训练结果作为其higher一层的输入;

③用监督学习去调整全部层

这里不负责任地理解下,举个样例在Autoencoder中,无监督学习学的是feature。有监督学习用在fine-tuning.
比方每个neural network 学出的hidden layer就是feature,作为下一次神经网络无监督学习的input……这样一次次就学出了一个deep的网络,每一层都是上一次学习的hidden layer。

再用softmax classifier去fine-tuning这个deep network的系数。

这三个点是Deep Learning Algorithm的精髓,我在上一篇文章中也有讲到,当中第三部分:Learning
Features Hierachy & Sparse DBN就讲了怎样运用Sparse DBN进行feature学习。

4. Deep Learning 经典阅读材料:

阐述Deep learning主要思想的三篇文章:
06年后。大批deep learning文章涌现。感兴趣的能够看下大牛Yoshua Bengio的综述Learning
deep architectures for {AI}
,只是本文非常长,非常长……

5. Deep Learning工具—— Theano

Theano是deep
learning的Python库,要求首先熟悉Python语言和numpy,建议读者先看Theano
basic tutorial
,然后依照Getting
Started
 
下载相关数据并用gradient descent的方法进行学习。

学习了Theano的基本方法后,能够练习写下面几个算法:

有监督学习:

  1. Logistic Regression - using Theano for something
    simple
  2. Multilayer perceptron - introduction to layers
  3. Deep Convolutional Network - a simplified
    version of LeNet5

无监督学习:

最后呢,推荐给大家基本ML的书籍:

关于Machine Learning很多其它的学习资料将继续更新,敬请关注本博客和新浪微博Sophia_qing

References:

1. Brief Introduction to ML for AI

2.Deep Learning Tutorial

3.A tutorial on deep learning - Video

注明:转自Rachel Zhang的专栏http://blog.csdn.net/abcjennifer/article/details/7826917

机器学习——深度学习(Deep Learning)的更多相关文章

  1. (转)机器学习——深度学习(Deep Learning)

    from:http://blog.csdn.net/abcjennifer/article/details/7826917 Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立 ...

  2. (转)深度学习(Deep Learning, DL)的相关资料总结

    from:http://blog.sciencenet.cn/blog-830496-679604.html 深度学习(Deep Learning,DL)的相关资料总结 有人认为DL是人工智能的一场革 ...

  3. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  4. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

  5. 【重磅干货整理】机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    [重磅干货整理]机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总 .

  6. 机器学习(Machine Learning)&amp;深度学习(Deep Learning)资料

    机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...

  7. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  8. (转) 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

    特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

  9. 转:浅谈深度学习(Deep Learning)的基本思想和方法

    浅谈深度学习(Deep Learning)的基本思想和方法  参考:http://blog.csdn.net/xianlingmao/article/details/8478562 深度学习(Deep ...

随机推荐

  1. spirngMVC的搭建

    1 springMVC的搭建肯定是需要用到一系列的jar包的,那么第一步就是去spring官网下载对应版本的jar包 可以通过 http://www.cnblogs.com/imentors/p/49 ...

  2. Jdbc访问数据库篇

    一万年太久,只争朝夕 What JDBC 上部 JDBC(Java DataBase Connectivity)Java 数据库连接,主要提供编写 Java 数据库应用程序的 API 支持 java. ...

  3. Do you kown Asp.Net Core -- 配置Kestrel端口

    Kestrel介绍 在Asp.Net Core中,我们的web application 其实是运行在Kestrel服务上,它是一个基于libuv开源的跨平台可运行 Asp.Net Core 的web服 ...

  4. c#基础知识索引器

    代码 ]);    }} 在这里我们看到,无非是实现了一个泛型算法 等同于 Ontology List<string> lit=new List<string>(); lis. ...

  5. 教你五步制作精美的HTML时钟

    学了一段时间的HTML.CSS和JS后,给大家做一款漂亮的不像实力派的HTML时钟,先看图:涉及到的知识点有: CSS3动画.DOM操作.定时器.圆点坐标的计算(好多人是不是已经还给自己的老师了~)  ...

  6. 【转】Java中用单例模式有什么好处

    Java Singleton模式主要作用是保证在Java应用程序中,一个类Class只有一个实例存在. 使用Singleton的好处还在于可以节省内存,因为它限制了实例的个数,有利于Java垃圾回收( ...

  7. 安装apache

    1.安装依赖软件 pcre gcc expat apr(Apache portable Run-time libraries,Apache可移植运行库) apr-util [root@localhos ...

  8. 【原创】python爬虫获取网站数据并存入本地数据库

    #coding=utf-8 import urllib import re import MySQLdb dbnumber = MySQLdb.connect('localhost', 'root', ...

  9. KNN--用于手写数字识别

    优点:精度高,对异常值不敏感,无数据输入假定 缺点:计算复杂度高,空间复杂度高 适用数据范围:数值型和标称型   一般流程:     (1). 收集数据(网络抓取)     (2).处理数据,将数据处 ...

  10. js 获取每月有几周,根据年月周获取该周从周一到周日的日期等方法

    本文基于react-native 本人在用react-native写一个关于课程表的APP时需要课程表按照日期周期显示,网上查了许多方法,都没有达到自己想要的效果,根据一些方法的参考,再根据自己思维写 ...