又是数论题


Q&A

Q:你TM做数论上瘾了吗

A:没办法我数论太差了,得多练(shui)啊


题意

题目描述

已知多项式方程:

a0+a1x+a2x^2+..+anx^n=0

求这个方程在[1, m ] 内的整数解(n 和m 均为正整数)

输入输出格式

输入格式:

输入文件名为equation .in。

输入共n + 2 行。

第一行包含2 个整数n 、m ,每两个整数之间用一个空格隔开。

接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an

输出格式:

输出文件名为equation .out 。

第一行输出方程在[1, m ] 内的整数解的个数。

接下来每行一个整数,按照从小到大的顺序依次输出方程在[1, m ] 内的一个整数解。


我们来看看这鬼畜的NOIP题目怎么做(shui)

讲道理,这道题最难的地方在于:不知谁在洛谷上给它贴上了高精度的标签(管理给我滚粗来)我想知道有多少人在这狗血标签的引导下怒写高精+压位+秦九昭+各种奇技淫巧优化,最后拿个T回去哭


正解并没有用到高精度(虽然我写的输入是仿照高精度的,但是hzw大的代码是直接字符串处理的Orz)
但是hzw用了一个神奇的pre来存x的i次方,我懒得打就打了一个秦九昭(讲道理,秦九昭不会比暴力难打,而且可以少开一个数组)

顺便一提,据说大神用过的质数会有灵气,我直接用了hzw用的5个质数当mod

对于5个(其实无所谓选几个,多一点可以保险一些我这种rp不佳的必备)选出的质数p,每个都处理出1~p-1代入原式modp算出的结果

这个结果就可以代表所有modp同余的数的结果(因为显然每次增加p的话,结果变化量是p的倍数,modp以后不会变),若modp以后不为0则一定不是方程解

尽管我们不能保证为0的话实际结果就一定是0,但是用5个数都验证一遍以后基本就能保证这个结果为0

===没了===


上代码

 #include<cstdio>
int mod[]={,,,,};
int n,m;
int ans[];
int a[][],res[][],aa[][],num[];
bool flag[];
int main()
{
scanf("%d%d",&n,&m);
char ch=getchar();
for(int i=;i<=n;i++)
for(num[i]=,flag[i]=false,ch=getchar();(ch>='' && ch<='')||(ch=='-');ch=getchar())
if(ch=='-')
flag[i]=true;
else
aa[i][++num[i]]=ch-'';
for(int i=;i<;i++)
for(int j=;j<=n;j++)
{
a[i][j]=;
for(int k=;k<=num[j];k++)
a[i][j]=(a[i][j]*+aa[j][k])%mod[i];
if(flag[j])
a[i][j]=-a[i][j];
}
for(int t=;t<;t++)
for(int x=;x<mod[t];x++)
{
int sum=;
for(int i=n;i>=;i--)
sum=(sum*x+a[t][i])%mod[t];
res[t][x]=sum;
}
int sum=;
bool flag;
for(int i=;i<=m;i++)
{
flag=true;
for(int t=;t<;t++)
if(res[t][i%mod[t]]!=)
{
flag=false;
break;
}
if(flag)
ans[++sum]=i;
}
printf("%d\n",sum);
for(int i=;i<=sum;i++)
printf("%d\n",ans[i]);
return ;
}

NOIP2014 uoj20解方程 数论(同余)的更多相关文章

  1. luogu2312 解方程 (数论,hash)

    luogu2312 解方程 (数论,hash) 第一次外出学习讲过的题目,然后被讲课人的一番话惊呆了. 这个题,我想着当年全国只有十几个满分.....然后他又说了句我考场A这道题时,用了5个模数 确实 ...

  2. 【NOIP2014】解方程

    题目描述 已知多项式方程 \[a_0 + a_1x + a_2x^2 + \dots +a_nx^n=0\] 求这个方程在\([1,m]\)内的整数解(\(n\)和\(m\)均为正整数). 输入输出格 ...

  3. [noip2014]P2312 解方程

    P2312 解方程 其实这道题就是求一个1元n次方程在区间[1, m]上的整数解. 我们枚举[1, m]上的所有整数,带进多项式中看看结果是不是0即可. 这里有一个技巧就是秦九韶算法,请读者自行查看学 ...

  4. 【bzoj3751】[NOIP2014]解方程 数论

    题目描述 已知多项式方程: a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). 输入 第一行包含2个整数n.m,每两个整数之间用一个空格隔开 ...

  5. UOJ20 解方程

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  6. 【NOIP2014】解方程(枚举)

    题面 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入格式 输入共n + 2 行. 第一行包含2 个整数 ...

  7. $Noip2014/Luogu2312$ 解方程

    $Luogu$ $Sol$ 枚举解+秦九韶公式计算+取模. $Code$ #include<iostream> #include<cstdio> #include<cst ...

  8. 题解 【NOIP2014】解方程

    题面 解析 这题的数据看起来似乎特别吓人... 但实际上, 这题非常好想. 只需要模一个大质数就行了(我模的是1e9+7)(实测有效) 另外,a要用快读读入,再一边模Mod(因为实在太大了). 然后, ...

  9. bzoj 3751: [NOIP2014]解方程 同余系枚举

    3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...

随机推荐

  1. DD_belatedPNG.js解决透明PNG图片背景灰色问题

    <!--[]> <script type="text/javascript" src="http://www.phpddt.com/usr/themes ...

  2. Loadrunner安装

    安装参考网址:http://www.cnblogs.com/yangxia-test/archive/2012/10/30/2746621.html 本人验证过的,不自己写了 另附Loadrunner ...

  3. CentOS7下搭建邮件服务器(dovecot + postfix + SSL)

    CentOS   花了基本上两天的时间去配置CentOS7下的邮件服务器.其中艰辛太多了,一定得总结下. 本文的目的在于通过一系列配置,在CentOS 7下搭建dovecot + postfix + ...

  4. @SuppressWarnings的参数

    @SuppressWarnings 是J2EE的最后一个批注,该批注的作用是告诉编译器对被批注的元素内部的某些警告保持静默 @SuppressWarnings("unchecked" ...

  5. (转)PostgreSQL 兼容Oracle - orafce

    转自:http://blog.163.com/digoal@126/blog/static/1638770402015112144250486/ PostgreSQL是和Oracle最接近的企业数据库 ...

  6. JavaScript 快速排序(Quicksort)

    "快速排序"的思想很简单,整个排序过程只需要三步: (1)在数据集之中,选择一个元素作为"基准"(pivot). (2)所有小于"基准"的元 ...

  7. Daily Scrum Meeting ——TenthDay

    一.Daily Scrum Meeting照片 二.Burndown Chart 新增了几个issues 三.项目进展 1.完成了登录界面与管理员和发布者界面的整合. 2.活动发布者界面的完成 四.问 ...

  8. SQL语句 分页实现

    1 通过sql实现分页. select top 5 * from judgeorder where id  not in (select top 10 id from judgeorder order ...

  9. 【DevOps】DevOps成功的八大炫酷工具

    为自动化和分析所设计的软件及服务正加速devops改革的步伐,本文为你盘点了Devops成功的八大炫酷工具 Devops凭借其连接弥合开发与运营团队的能力正在各个行业呈现席卷之势.开发人员和运营人员历 ...

  10. 四种常见的 POST 提交数据方式

    HTTP/1.1 协议规定的 HTTP 请求方法有 OPTIONS.GET.HEAD.POST.PUT.DELETE.TRACE.CONNECT 这几种.其中 POST 一般用来向服务端提交数据,本文 ...