2016中国大学生程序设计竞赛 网络选拔赛 I This world need more Zhu
This world need more Zhu
Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 262 Accepted Submission(s): 49
In Duoladuo, this place is like a tree. There are n vertices and n−1 edges. And the root is 1. Each vertex can reached by any other vertices. Each vertex has a people with value Ai named Zhu's believer.
Liao is a curious baby, he has m questions to ask Zhu. But now Zhu is busy, he wants you to help him answer Liao's questions.
Liao's question will be like "u v k".
That means Liao want to know the answer from following code:
ans = 0; cnt = 0;
for x in the shortest path from u to v {
cnt++;
if(cnt mod k == 0) ans = max(ans,a[x]);
}
print(ans).
Please read the hints for more details.
In the second line there are two numbers n, m. n is the size of Duoladuo, m is the number of Liao's questions.
The next line contains n integers A1,A2,...An, means the value of ith vertex.
In the next n−1 line contains tow numbers u, v. It means there is an edge between vertex u and vertex v.
The next m lines will be the Liao's question:
u v k
1≤T≤10,1≤n≤100000,1≤m≤100000,1≤u,v≤n,1≤k, Ai≤1000000000.
Then, you need to output the answer for every Liao's questions.
5 5
1 2 4 1 2
1 2
2 3
3 4
4 5
1 1 1
1 3 2
1 3 100
1 5 2
1 3 1
1
2
0
2
4
In query 1,there are only one vertex in the path,so the answer is 1.
In query 2,there are three vertices in the path.But only the vertex 2 mod 2 equals to 0.
In query 3,there are three vertices in the path.But no vertices mod 100 equal to 0.
In query 4,there are five vertices in the path.There are two vertices mod 2 equal to 0.So the answer is max(a[2],a[4]) = 2.
In query 5,there are three vertices in the path.And all the vertices mod 1 equal to 0. So the answer is a[3] = 4.
题意:
给出一棵树,每次询问从u,v,k,代表如果从u到v的路径上的节点从一开始编号的话,编号为k的倍数的节点的权值最大值是多少?
题解:
分k的大小进行讨论
1、当k大于sqrt(n)时,可以进行暴力。
可以知道对于任意一次路径,如果可以O(1)寻找到k步之后的节点的话,不会超过sqrt(n)的节点需要统计。
总复杂度O(sqrt(n))。
O(1)寻找k步之后的节点,我的做法需要离线。
u到lca(u,v)再到v的过程可以看作u到lca(u,v),v到lca(u,v)两部分。
如果对u,v进行修正(往上跳到第一个选取的节点O(logn)或者O(1)),可以认为两部分的询问都是在一条链上进行的。
所以在使用人工栈进行dfs的话,可以O(1)在栈中找到往上k步的节点。 2、当k小于sqrt(n),对于每种k都可以单独处理出所有询问答案。
用类似tarjan求lca的方法,每次对于每种k先O(n)预处理出所有点向上跳K步的父亲。
事实上,某个节点向上k步的父亲就是在dfs序中在在其左侧最近的深度恰好比起高k的节点。 然后进行类似tarjan的过程,只不过每次做并查集时与向上跳K步的父亲merge。
并且在做路径压缩时顺便记录下当前路径的最大值,并且路径压缩到lca为止。
当然,需要预先处理出所有询问u,v的lca。
每次对于某种K,复杂度O(n) 总复杂度O(m sqrt(n)。
const int N = , SQRTN = , M = ;
int n, m;
int value[N];
int depth[N], father[N], dfsList[N];
vector<int> force[N]; struct AdjacencyList {
int head[N], son[N * ], nex[N * ], tot; inline void init(int n = N) {
for(int i = ; i < n; ++i) head[i] = -;
tot = ;
} inline void addEdge(int u, int v) {
son[tot] = v, nex[tot] = head[u];
head[u] = tot++;
} int que[N], len, size[N], pos[N];
bool visit[N];
inline void build(int n, int depth[], int fa[], int dfs[]) {
for(int i = ; i < n; ++i) visit[i] = false, size[i] = ;
len = , que[] = , fa[] = -, depth[] = , visit[] = true;
for(int hed = ; hed < len; ++hed) {
int u = que[hed];
for(int v, tab = head[u]; tab != -; tab = nex[tab])
if(visit[v = son[tab]] == false) {
visit[v] = true, fa[v] = u, depth[v] = depth[u] + ;
que[len++] = v;
}
} for(int i = len - ; i >= ; --i) {
++size[i];
if(fa[i] != -) size[fa[i]] += size[i];
}
dfs[] = , pos[] = ;
for(int i = ; i < len; ++i) {
int u = que[i];
for(int cnt = , tab = head[u], v; tab != -; tab = nex[tab])
if((v = son[tab]) != fa[u]) {
pos[v] = pos[u] + cnt + ;
dfs[pos[v]] = v;
cnt += size[v];
}
}
}
} edge; struct ST {
int fa[N][M], *depth; inline void init(int n, int father[], int tdepth[]) {
depth = tdepth;
for(int i = ; i < n; ++i) fa[i][] = father[i];
for(int dep = ; dep < M; ++dep)
for(int i = ; i < n; ++i)
if(fa[i][dep - ] != -)
fa[i][dep] = fa[fa[i][dep - ]][dep - ];
else fa[i][dep] = -;
} inline int getLca(int u, int v) {
if(depth[u] < depth[v]) swap(u, v);
for(int dep = M - ; dep >= ; --dep)
if(fa[u][dep] != - && depth[fa[u][dep]] >= depth[v])
u = fa[u][dep];
if(u == v) return u;
for(int dep = M - ; dep >= ; --dep)
if(fa[u][dep] != - && fa[u][dep] != fa[v][dep])
u = fa[u][dep], v = fa[v][dep];
return fa[u][];
} inline int getFather(int u, int step) {
for(int dep = M - ; dep >= ; --dep)
if(fa[u][dep] != - && ( << dep) <= step)
u = fa[u][dep], step -= ( << dep);
return u;
}
} st; struct Query {
int u, v, k, lca, ans, id; inline void read() {
scanf("%d%d%d", &u, &v, &k);
--u, --v;
lca = st.getLca(u, v), ans = ;
} inline void upd(int x) {
if(ans < x) ans = x;
} inline void fix(int &u, int lca, int jump, int depth[]) {
if(depth[u] - depth[lca] >= jump) {
u = st.getFather(u, jump);
upd(value[u]);
} else u = lca;
} inline void fix(int depth[]) {
if((depth[u] - depth[lca] + ) % k == ) upd(value[lca]);
fix(v, lca, (depth[u] + depth[v] - depth[lca] * + ) % k, depth);
fix(u, lca, k - , depth);
} inline operator <(const Query &t) const {
return k < t.k;
}
} query[N]; struct SolutionForLessThanSqrtN {
int jump[N], cnt[N], que[N], top;
int f[N], g[N];
vector<int> wait[N]; inline void init(int n, int value[], int depth[], int dfs[], int k) {
for(int i = ; i < n; ++i) wait[i].clear();
for(int i = ; i < n; ++i) f[i] = i, g[i] = value[i]; top = -;
for(int i = ; i < n; ++i) cnt[i] = -;
for(int i = ; i < n; ++i) {
int u = dfs[i];
while(top >= && depth[u] != depth[que[top - ]] + ) --top;
que[++top] = u;
if(depth[u] < k) jump[u] = -;
else jump[u] = cnt[depth[u] - k];
cnt[depth[u]] = u;
}
} inline void add(int idx) {
wait[query[idx].lca].pub(idx);
} inline int expose(int x, int lim = -, int *depth = NULL) {
if(x == lim) return ;
if(x == f[x]) return g[x];
if(depth != NULL && depth[f[x]] <= depth[lim]) return g[x];
int t = f[x];
expose(f[x], lim, depth);
f[x] = f[t], g[x] = max(g[x], g[t]);
return g[x];
} inline void merge(int u, int v) {
expose(u), expose(v);
f[f[u]] = f[v];
} inline void solve(int n, int dfs[], int depth[]) {
for(int i = n - ; i >= ; --i) {
int u = dfs[i];
foreach(idx, wait[u]) {
int i = *idx;
query[i].upd(expose(query[i].u, query[i].lca, depth));
query[i].upd(expose(query[i].v, query[i].lca, depth));
}
if(jump[u] != -) merge(u, jump[u]);
}
}
} solver; inline bool cmpByIndex(const Query &a, const Query &b) {
return a.id < b.id;
} int myStack[N], top; inline void updata(int x, int g, int q, int depth[]) {
while(x >= query[q].k && depth[myStack[x - query[q].k]] > depth[g]) {
x -= query[q].k;
query[q].upd(value[myStack[x]]);
}
} inline void solve() {
for(int i = ; i < m; ++i) query[i].fix(depth);
for(int i = ; i < n; ++i) force[i].clear();
sort(query, query + m); int limit = floor(sqrt(n));
for(int i = , j; i < m; i = j + )
if(query[i].k <= limit) {
for(j = i; j < m - && query[j + ].k == query[i].k; ++j);
solver.init(n, value, depth, dfsList, query[i].k);
for(int k = i; k <= j; ++k) solver.add(k);
solver.solve(n, dfsList, depth);
} else force[query[i].u].pub(i), force[query[i].v].pub(i), j = i; top = -;
for(int i = ; i < n; ++i) {
int x = dfsList[i];
while(top >= && depth[x] != depth[myStack[top]] + ) --top;
myStack[++top] = x;
foreach(q, force[x])
updata(top, query[*q].lca, *q, depth);
} sort(query, query + m, cmpByIndex);
for(int i = ; i < m; ++i) printf("%d\n", query[i].ans);
} int main() {
int testCase;
scanf("%d", &testCase);
for(int testIndex = ; testIndex <= testCase; ++testIndex) {
scanf("%d%d", &n, &m);
edge.init();
for(int i = ; i < n; ++i) scanf("%d", &value[i]);
for(int i = , v, u; i < n - ; ++i) {
scanf("%d%d", &u, &v);
--u, --v;
edge.addEdge(u, v), edge.addEdge(v, u);
}
edge.build(n, depth, father, dfsList);
st.init(n, father, depth);
for(int i = ; i < m; ++i) query[i].id = i, query[i].read();
printf("Case #%d:\n", testIndex);
solve();
}
return ;
}
2016中国大学生程序设计竞赛 网络选拔赛 I This world need more Zhu的更多相关文章
- 2016中国大学生程序设计竞赛 - 网络选拔赛 C. Magic boy Bi Luo with his excited tree
Magic boy Bi Luo with his excited tree Problem Description Bi Luo is a magic boy, he also has a migi ...
- 2016中国大学生程序设计竞赛 - 网络选拔赛 J. Alice and Bob
Alice and Bob Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) ...
- 2016中国大学生程序设计竞赛 - 网络选拔赛 1004 Danganronpa
Problem Description Chisa Yukizome works as a teacher in the school. She prepares many gifts, which ...
- 2016中国大学生程序设计竞赛 - 网络选拔赛 1011 Lweb and String
Problem Description Lweb has a string S. Oneday, he decided to transform this string to a new sequen ...
- 2016中国大学生程序设计竞赛 - 网络选拔赛 1001 A water problem (大数取余)
Problem Descripton Two planets named Haha and Xixi in the universe and they were created with the un ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 1001 - Buy and Resell 【优先队列维护最小堆+贪心】
题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6438 Buy and Resell Time Limit: 2000/1000 MS (Java/O ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 1010 YJJ's Salesman 【离散化+树状数组维护区间最大值】
题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6447 YJJ's Salesman Time Limit: 4000/2000 MS (Java/O ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 1009 - Tree and Permutation 【dfs+树上两点距离和】
Tree and Permutation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Oth ...
- HDU 6154 - CaoHaha's staff | 2017 中国大学生程序设计竞赛 - 网络选拔赛
/* HDU 6154 - CaoHaha's staff [ 构造,贪心 ] | 2017 中国大学生程序设计竞赛 - 网络选拔赛 题意: 整点图,每条线只能连每个方格的边或者对角线 问面积大于n的 ...
随机推荐
- 动力节点Java培训告诉你Java线程的多功能用法
现在的java开发可谓是八仙过海各显神通啊!遥想当下各种编程语言萎靡不振,而我Java开发异军突起,以狂风扫落叶之态,作为Java培训行业的黄埔军校,为了守护Java之未来,特意总结了一些不被人所熟知 ...
- ArcEngine地图窗口指定区域导出指定DPI多格式---delphi/C#实现
delphi/C#实现,其他语言稍微改下就行了.AE的编码各个语言都差不多,这里也没用到某一语言的特性. 函数特点: 1.可以精确导出指定范围的图形要素 2.支持多格式.TIF, .EMF,.GIF, ...
- Protecting against XML Entity Expansion attacks
https://blogs.msdn.microsoft.com/tomholl/2009/05/21/protecting-against-xml-entity-expansion-attacks/ ...
- PHP如何通过Http Post请求发送Json对象数据?
因项目的需要,PHP调用第三方 Java/.Net 写好的 Restful Api,其中有些接口,需要 在发送 POST 请求时,传入对象. Http中传输对象,最好的表现形式莫过于JSON字符串了, ...
- jquery_DOM笔记
回头补充知识: jquery事件复习: bind() 用于绑定多个事件,当某一个节点需要进行多项处理的时候使用 .使用方式 $(select).bind({event:function(),event ...
- 2016 GitHub章鱼猫观察报告之开源统计
导读 GitHub 又发布了一年一度的章鱼猫观察报告.在这个报告中,分别对开源和社区做了一些有趣的统计,现将其中一些有趣的数据和趋势撷取出来分享给大家.完整的报告请移步Github. GitHub 上 ...
- 多重网格法简介(Multi Grid)
原文链接 多重网格法是一种用于求解方程组的方法,可用于插值.解微分方程等. 从专业角度讲多重网格法实际上是一种多分辨率的算法,由于直接在高分辨率(用于求解的间隔小)上进行求解时对于低频部分收敛较慢,与 ...
- $.prop()和$.attr() 区别用法
都用于读取和设置DOM元素节点的属性 不同: $.attr()用于DOM元素本身的属性 $.prop()用于DOM节点对应的JS属性(源于DOM元素到JS对象的映射) 源于两者在jquery类库的实现 ...
- Unity3D 更新文件下载器
使用说明: 1)远端更新服务器目录 Package |----list.txt |----a.bundle |----b.bundle 2)list.txt是更新列表文件 格式是 a.bundle|r ...
- FixFFmpeg 修改官方编译的ffmpeg能在 XP 上运行的工具
把 fixff.cmd 和 FixFFmpeg.exe 拷贝到 ffmpeg 所在的目录 运行 fixff.cmd 自动修复; fixffmpeg-20160924.7z