上一篇 源码分析 RocketMQ DLedger(多副本) 之日志复制(传播) ,可能有不少读者朋友们觉得源码阅读较为枯燥,看的有点云里雾里,本篇将首先梳理一下 RocketMQ DLedger 多副本关于日志复制的三个核心流程图,然后再思考一下在异常情况下如何保证数据一致性。
@(本节目录)

1、RocketMQ DLedger 多副本日志复制流程图

1.1 RocketMQ DLedger 日志转发(append) 请求流程图

1.2 RocketMQ DLedger 日志仲裁流程图

1.3 RocketMQ DLedger 从节点日志复制流程图

2、RocketMQ DLedger 多副本日志复制实现要点


上图是一个简易的日志复制的模型:图中客户端向 DLedger 集群发起一个写请求,集群中的 Leader 节点来处理写请求,首先数据先存入 Leader 节点,然后需要广播给它的所有从节点,从节点接收到 Leader 节点的数据推送对数据进行存储,然后向主节点汇报存储的结果,Leader 节点会对该日志的存储结果进行仲裁,如果超过集群数量的一半都成功存储了该数据,主节点则向客户端返回写入成功,否则向客户端写入写入失败。

接下来我们来探讨日志复制的核心设计要点。

2.1 日志编号

为了方便对日志进行管理与辨别,raft 协议为一条一条的消息进行编号,每一条消息达到主节点时会生成一个全局唯一的递增号,这样可以根据日志序号来快速的判断数据在主从复制过程中数据是否一致,在 DLedger 的实现中对应 DLedgerMemoryStore 中的 ledgerBeginIndex、ledgerEndIndex,分别表示当前节点最小的日志序号与最大的日志序号,下一条日志的序号为 ledgerEndIndex + 1 。

与日志序号还与一个概念绑定的比较紧密,即当前的投票轮次。

2.2 追加与提交机制

请思考如下问题,Leader 节点收到客户端的数据写入请求后,通过解析请求,提取数据部分,构建日志对象,并生成日志序号,用 seq 表示,然后存储到 Leader 节点中,然后将日志广播(推送)到其从节点,由于这个过程中存在网络时延,如果此时客户端向主节点查询 seq 的日志,由于日志已经存储在 Leader 节点中了,如果直接返回给客户端显然是有问题的,那该如何来避免这种情况的发生呢?

为了解决上述问题,DLedger 的实现(应该也是 raft 协议的一部分)引入了已提交指针(committedIndex)。即当主节点收到客户端请求时,首先先将数据存储,但此时数据是未提交的,此过程可以称之为追加,此时客户端无法访问,只有当集群内超过半数的节点都将日志追加完成后,才会更新 committedIndex 指针,得以是数据能否客户端访问。

一条日志要能被提交的充分必要条件是日志得到了集群内超过半数节点成功追加,才能被认为已提交。

2.3 日志一致性如何保证

从上文得知,一个拥有3个节点的 DLedger 集群,只要主节点和其中一个从节点成功追加日志,则认为已提交,客户端即可通过主节点访问。由于部分数据存在延迟,在 DLedger 的实现中,读写请求都将由 Leader 节点来负责。那落后的从节点如何再次跟上集群的步骤呢?

要重新跟上主节点的日志记录,首先要知道的是如何判断从节点已丢失数据呢?

DLedger 的实现思路是,DLedger 会按照日志序号向从节点源源不断的转发日志,从节点接收后将这些待追加的数据放入一个待写队列中。关键中的关键:从节点并不是从挂起队列中处理一个一个的追加请求,而是首先查阅从节点当前已追加的最大日志序号,用 ledgerEndIndex 表示,然后尝试追加 (ledgerEndIndex + 1)的日志,用该序号从代写队列中查找,如果该队列不为空,并且没有 (ledgerEndIndex + 1)的日志条目,说明从节点未接收到这条日志,发生了数据缺失。然后从节点在响应主节点 append 的请求时会告知数据不一致,然后主节点的日志转发线程其状态会变更为COMPARE,将向该从节点发送COMPARE命令,用来比较主从节点的数据差异,根据比较的差异重新从主节点同步数据或删除从节点上多余的数据,最终达到一致。于此同时,主节点也会对PUSH超时推送的消息发起重推,尽最大可能帮助从节点及时更新到主节点的数据。

更多问题,`欢迎大家留言与我一起探讨。如果觉得文章对自己有些用处的话,麻烦帮忙点个赞,谢谢。


推荐阅读:RocketMQ 日志复制系列文章:
1、源码分析 RocketMQ DLedger 多副本存储实现
2、源码分析 RocketMQ DLedger(多副本) 之日志追加流程
3、源码分析 RocketMQ DLedger(多副本) 之日志复制(传播)


作者介绍:丁威,《RocketMQ技术内幕》作者,RocketMQ 社区布道师,公众号:中间件兴趣圈 维护者,目前已陆续发表源码分析Java集合、Java 并发包(JUC)、Netty、Mycat、Dubbo、RocketMQ、Mybatis等源码专栏。可以点击链接加入中间件知识星球 ,一起探讨高并发、分布式服务架构,交流源码。

基于 raft 协议的 RocketMQ DLedger 多副本日志复制设计原理的更多相关文章

  1. DLedger —基于 raft 协议的 commitlog 存储库

    “点击获取上云帮助文档” 尊敬的阿里云用户: 您好!为方便您试用开源 RocketMQ 客户端访问阿里云MQ,我们申请了专门的优惠券,优惠券可以直接抵扣金额.请填写下您公司账号信息,点击上图,了解更多 ...

  2. 源码分析 RocketMQ DLedger 多副本之 Leader 选主

    目录 1.DLedger关于选主的核心类图 1.1 DLedgerConfig 1.2 MemberState 1.3 raft协议相关 1.4 DLedgerRpcService 1.5 DLedg ...

  3. 源码分析 RocketMQ DLedger(多副本) 之日志复制(传播)

    目录 1.DLedgerEntryPusher 1.1 核心类图 1.2 构造方法 1.3 startup 2.EntryDispatcher 详解 2.1 核心类图 2.2 Push 请求类型 2. ...

  4. 实践案例丨基于 Raft 协议的分布式数据库系统应用

    摘要:简单介绍Raft协议的原理.以及存储节点(Pinetree)如何应用 Raft实现复制的一些工程实践经验. 1.引言 在华为分布式数据库的工程实践过程中,我们实现了一个计算存储分离. 底层存储基 ...

  5. 源码分析 RocketMQ DLedger 多副本存储实现

    目录 1.DLedger 存储相关类图 1.1 DLedgerStore 1.2 DLedgerMemoryStore 1.3 DLedgerMmapFileStore 2.DLedger 存储 对标 ...

  6. RocketMQ 整合 DLedger(多副本)即主从切换实现平滑升级的设计技巧

    目录 1.阅读源码之前的思考 2.从 Broker 启动流程看 DLedger 2.1 构建 DefaultMessageStore 2.2 增加节点状态变更事件监听器 2.3 调用 DefaultM ...

  7. RocketMQ 多副本前置篇:初探raft协议

    目录 1.Leader选举 1.1 一轮投票中,只有一个节点发起投票的情况 1.2 一轮投票中,超过一个节点发起投票的情况 1.3 思考如何实现Raft选主 2.日志复制 Raft协议是分布式领域解决 ...

  8. Docker 部署 RocketMQ Dledger 集群模式( 版本v4.7.0)

    文章转载自:http://www.mydlq.club/article/97/ 系统环境: 系统版本:CentOS 7.8 RocketMQ 版本:4.7.0 Docker 版本:19.03.13 一 ...

  9. Raft协议--中文论文介绍

    本篇博客为著名的 RAFT 一致性算法论文的中文翻译,论文名为<In search of an Understandable Consensus Algorithm (Extended Vers ...

随机推荐

  1. 安装Fedora后

    更新操作系统版本: https://fedoraproject.org/wiki/DNF_system_upgrade    靠谱: 设置ssh:ssh生成公钥私钥.默认root(.ssh/confi ...

  2. shell配置文件

    个人配置主要集中在-/.profile文件中 打开新的交互式shell时,配置文件的执行顺序是/etc/profile  /etc/bashrc  ~/.profile   最后是~/.bashrc ...

  3. Python标准类型的分类

    Python有3种不同的模型可以帮助对基本类型进行分类,这些类型更好的理解类型之间的相互关系以及他们的工作原理. 1 存储模型    能保存单个字面对象的类型,称为原子或标量存储:    能保存多个对 ...

  4. 论文阅读:Face Recognition: From Traditional to Deep Learning Methods 《人脸识别综述:从传统方法到深度学习》

     论文阅读:Face Recognition: From Traditional to Deep Learning Methods  <人脸识别综述:从传统方法到深度学习>     一.引 ...

  5. (四十四)golang--协程(goroutine)和管道(channel)相结合实例

    统计1-8000之间的素数. 整体框架: 说明:有五个协程,三个管道.其中一个协程用于写入数字到intChan管道中,另外四个用于取出intChan管道中的数字并判断是否是素数,然后将素数写入到pri ...

  6. HTML、CSS基础知识

    前端基础 1. CSS 8 1.1. CSS叫做层叠样式表,用来设置页面中元素的样式.背景颜色.字体颜色.字体大小... 8 1.2. CSS负责结构.表现.行为中的表现 8 1.3. 编写的位置 8 ...

  7. Fortran文件读写--查找内容

    program ex implicit none character(len=) A(),B(),C() !A异常.B已开挖.C需标记 integer i,j,N1,N2,count !N1是10号文 ...

  8. Glibc编译报错:*** These critical programs are missing or too old: as ld gcc

    Binutils版本升级 这里是binutils版本过低导致, 查看已部署版本 上传离线升级包 [root@sdw1 glibc]# tar -zxvf binutils-2.32.tar.gz [r ...

  9. 删除排序数组中的重复项II

    Given a sorted array nums, remove the duplicates in-place such that duplicates appeared at most twic ...

  10. LNMP Shell脚本发布

    #!/bin/bash # : #This author is DKS #auto install nginx mysql php ################################## ...