题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

问题分析

我们将跳法个数y与台阶数n视为一个函数关系,即y=f(n)。首先从第一级开始,当n=1时,只有一种跳法,即f(1)=1。当有两级台阶时,有两种跳法,跳两个一阶,或直接跳两阶,共有两种解法,即f(n)=2。

当n>2时,对于n级台阶而言,每次只能选跳一阶或者二阶中的一种,无论是哪一种,都只有唯一的选择。故当跳一阶的时候,跳法和f(n-1)的跳法个数相同,当跳二阶的时候,跳法个数和f(n-2)的个数相同。从

而对于跳n阶台阶的解法满足f(n)=f(n-1)+f(n-2)

对于这个计算公式,大家有没有很熟悉。没错这就是斐波那契数列的计算公式,跳台阶问题就是斐波那契数列问题的一个变种,只不过起始条件稍有变化,通常推荐使用循环来实现fibonacci数列。

下面给出该问题的C++实现:

class Solution {
public:
int jumpFloor(int number) {
//斐波那契数列问题的扩展
if(number<=0){ //非法输入检测
return 0;
}else if(number<=2){ //起始一级和两级台阶
return number;
}
int pre_2=1,pre_1=2,curr=0;
for(int i= 3;i<=number;i++){ //使用循环求解斐波那契数列
curr=pre_2+pre_1;
pre_2=pre_1;
pre_1=curr;
}
return curr;
}
};

 刷题,只为了不给自己留遗憾!------haozi

剑指offer 9-10:青蛙跳台阶与Fibonacii数列的更多相关文章

  1. 【剑指Offer】10- II. 青蛙跳台阶问题 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 个人微信公众号:负雪明烛 目录 题目描述 解题方法 动态规划 日期 题目地址:https: ...

  2. 【剑指 Offer】10-II.青蛙跳台阶问题

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶.求该青蛙跳上一个 n 级的台阶总共有多少种跳法. 答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008, ...

  3. 剑指Offer - 九度1388 - 跳台阶

    剑指Offer - 九度1388 - 跳台阶2013-11-24 03:43 题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包 ...

  4. 【剑指offer】09-3变态跳台阶

    原创博文,转载请注明出处! # 本文是牛客网<剑指offer>刷题笔记,笔记索引连接 1.题目 # 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的 ...

  5. 剑指offer 09:变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. /* f(n-1) = f(n-2) + f(n-3) + ... + f(0 ...

  6. 剑指offer(8)跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 题目分析 题目很简单,稍微分析就知道这是斐波那契数列,所以可以动态规划来做 a.如果两种跳法,1阶 ...

  7. 剑指offer九之变态跳台阶

    一.题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.思路 1.关于本题,前提是n个台阶会有一次n阶的跳法.分析如下: f(1) ...

  8. 【剑指Offer】8、跳台阶

      题目描述:   一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果).   解题思路:   首先考虑最简单的情况,如果只有1级台阶, ...

  9. 剑指offer 11:变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   解法:使用数学归纳法可得,跳n级台阶的跳法一共有f(n)=2n-1中,即本 ...

随机推荐

  1. Java低配版简单的随机点名系统

    import java.util.*; public class Dome{ public static void addSname(String[] students){ Scanner sc = ...

  2. TypeScript 学习笔记(三)

    类: 1.TypeScript 是面向对象的 JavaScript,类描述了创建的对象共同的属性和方法 2.类通过关键字 class 声明,使用 extends 关键字进行继承 3.在引用一个类成员时 ...

  3. 微软发布Visual Studio Online公共预览版和ML.NET 1.4

    在今天的Ignite 2019上,Microsoft启动了 Visual Studio Online 公共预览版.Visual Studio Online将Visual Studio,云托管的开发人员 ...

  4. mysql从命令行执行sql语句

    mysql -u root -p -e "create database mydb;"

  5. C++学习四 冒泡排序法的一些改进

    冒泡排序法需要两次扫描,所以从时间复杂度来说,是O(n2). 如果用图形表示,是这样的: 但是我们可以加以改进. 首先是,如果在排序中间,整个向量已经达到了有序状态,可以直接跳出来. 这样它的复杂度由 ...

  6. HTML与CSS学习笔记(5)

    1.文字阴影?(针对文字) text-shadow: 例如 text-shadow: 10px 10px 10px blue;四个值分别是 x y blur color blur表示模糊值,越大越模糊 ...

  7. 剑指Offer-7.斐波那契数列(C++/Java)

    题目: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 分析: 斐波那契数列是0,1,1,2,3,5,8,13...也就是当前 ...

  8. Bootstrap分页查询

    前台方法: function show() { $('#reportTable').bootstrapTable({ method: 'get', url: "@Url.Action(&qu ...

  9. MySQL实战45讲学习笔记:第四十讲

    一.本节概述 在上一篇文章中,我提到 MySQL 对自增主键锁做了优化,尽量在申请到自增 id 以后,就释放自增锁. 因此,insert 语句是一个很轻量的操作.不过,这个结论对于“普通的 inser ...

  10. linux jdk1.8 32位下载永久地址,ubuntu,centos,java

    链接: https://pan.baidu.com/s/16zSC0HZGFjrTAXrW6eyHzg 提取码: cj7m 复制这段内容后打开百度网盘手机App,操作更方便哦