TCP/IP 第三章
1,ip协议不可靠、无连接特性介绍
不可靠:计算机A往计算机B发送数据报1,若途径的路由器缓存已满,或者ttl(time to live 生存周期)到了,则路由器直接丢弃数据包1,并产生icmp数据包返回给计算机A。
无连接:计算机A向计算机B发送数据报1,2.其中数据包1先于数据包2发送。由于无连接性,两个数据包是独立发送的,故数据包2可能比数据包1先到达计算机B。
2,IP数据报格式:

4位版本:区分ipv4和ipv6
4位首部长度:单位4字节,4位可以有16个值。16*4为64.即理论上IP数据报的首部长度最大为64字节。但书本说最大有60个字节,未说明原因。知道原因的小伙伴谢谢指正。
8位服务类型如下:

16位IP数据报总长度。利用首部长度和总长度,可以知道数据内容的起始位置和长度。并且我们知道,IP数据报的长度最小为46字节(以太网MTU为46-1500字节)。有些情况下,数据内容不足以到达46字节的时候,需要填充一些数据已达到这个要求。这时候就需要通过总长度来区分非填充的数据。
16位标识:每个ip数据报都有个唯一的标识。初始值设置为系统引导时的时间。每发送一份数据报该值都会加1.
3位标志和13位偏移量后面讲分片时候再讲。
ttl:路由器的最大跳数。每经过一个路由器,ip数据报的ttl减1,当ttl减到0,路由器将丢弃该数据报,并产生一个icmp数据报给源主机。ttl的初始值一般为32或64.
16位的CRC(首部检验和):将首部每两个字节进行反码,所得的结果求和后记录为CRC,当经过路由器后,ttl减1,CRC加1.这样保证当数据报到达目的主机可以根据CRC值来判断数据报是否出现错误。CRC全为1时正确的。若不正确,则直接丢弃该数据报,不产生icmp数据报。可以通过上层协议解决可靠性。
选项:都是4字节的。主要功能:时间戳、宽松源站选路、严格源站选路等。不同的机器实现不同,所以选项功能一般不通用。
3,路由表:所含字段
目的主机/网络IP地址、下一跳路由器IP地址、发送接口、标志
目的主机/网络:网络地址,主机号为0.
下一跳路由器IP地址:所需要经过的下一跳路由器ip地址。
发送接口:一个主机可能有多个接口,我们称之为多接口主机。需要指定以哪一个接口发送到下一跳路由器。
标志:标志一个目的主机/网络IP地址时主机地址还是网络地址。也可以标志下一跳路由器时否为最终路由器。
4,搜索路由表的简单算法:
寻找是否有与目的IP地址完全匹配的表目,如果有,则直接按照该表目指定的接口发送到指定的下一跳路由器。
否则,寻找是否有与目的IP地址网络号匹配的表目,如果有,如上所述的操作。
否则,寻找路由器的默认表目,如果有,如上所述的操作。
否则,给应用程序返回主机不可达或网络不可达。


5,子网掩码

通过IP地址可以确定是哪类IP地址(A、B、C、D、E),通过哪类IP地址可以确定网络号与子网号的界限,通过子网掩码可以确定子网和号的界限。子网可以减少外网路由器的路由表规模。试想,30个c类地址可以通过一个B类地址(划分30个子网)来实现。从而减少外部路由器的路由表规模。当然对于内网路由器的路由表时不透明的。
6,ifconfig、netstat命令可以查看网络接口信息。
7,IP的未来
CIDR(无类别的域间选择)。第十章进行介绍。
TCP/IP 第三章的更多相关文章
- 图解 TCP/IP 第六章 TCP与UDP 笔记6.1 传输层的作用
图解 TCP/IP 第六章 TCP与UDP 笔记6.1 传输层的作用 传输层必须指出这个具体的程序,为了实现这一功能,使用端口号这样一种识别码.根据端口号,就可以识别在传输层上一层的应用程 ...
- TCP/IP协议三次握手与四次握手流程解析
原文链接地址:http://www.2cto.com/net/201310/251896.html TCP/IP协议三次握手与四次握手流程解析 TCP/IP协议的详细信息参看<TCP/IP协议详 ...
- TCP/IP协议三次握手与四次握手流程解析(转载及总结)
原文地址:http://www.2cto.com/net/201310/251896.html,转载请注明出处: TCP/IP协议三次握手与四次握手流程解析 一.TCP报文格式 TCP/IP协议的详 ...
- TCP/IP的三次握手协议
关于TCP/IP的三次握手协议,这篇文章中有详细的介绍,很通俗易懂,什么时候忘了,都可以过来瞧两眼,保证很快就明白了. 首先TCP/IP协议分为三个阶段:建立连接(握手阶段),数据传输阶段,连接终止阶 ...
- TCP/IP协议三次握手与四次握手
TCP/IP协议三次握手与四次握手流程解析 一.TCP报文格式 TCP/IP协议的详细信息参看<TCP/IP协议详解>三卷本.下面是TCP报文格式图:图1 TCP报文格式 上图中有几个 ...
- TCP/IP协议三次握手和四次挥手大白话解说
前言 昨天晚上被一位师傅问到了TCP/IP的工作机制,心里很清楚三次握手,然而对于四次挥手却忘了,这是大学习里学过的,奋而翻阅书籍和网络对之前所学的做一个温顾,算是夯实自我吧. TCP(Transmi ...
- Python进阶----网络通信基础 ,OSI七层协议() ,UDP和TCP的区别 , TCP/IP协议(三次握手,四次挥手)
Python进阶----网络通信基础 ,OSI七层协议() ,UDP和TCP的区别 , TCP/IP协议(三次握手,四次挥手) 一丶CS/BS 架构 C/S: 客户端/服务器 定义: ...
- 白话解说TCP/IP协议三次握手和四次挥手
白话解说TCP/IP协议三次握手和四次挥手 1.背景 和女朋友异地恋一年多,为了保持感情我提议每天晚上视频聊天一次. 从好上开始,到现在,一年多也算坚持下来了. 1.1.问题 有时候聊天的过程中,我的 ...
- 图解TCP/IP→第2章基础知识
####TCP.IP背景**关键词:ARPANET,UNIX,分组交换技术,*ARPANET(阿帕网),也是全球互联网的鼻祖.阿帕网的成功也充分证明了基于分组交换技术的通信方法的可行性.*20世纪70 ...
随机推荐
- OpenGL(一)绘制圆、五角星、正弦曲线
OpenGL入门之"顶点":OpenGL规定,一个多边形必须是一个"凸多边形",即连接多边形上任意两点,其连线都在多边形内部.多边形可以由其边上的端点(这里可称 ...
- windows 7 SDK和DDK下载
检查小数据,获取地址.顺便记录下来. Windows Driver Kit Version 7.1.0 http://www.microsoft.com/downloads/details.aspx? ...
- 知乎C++问题整理
如何平衡性能,合理选择C++STL集装箱? ANSER: 首先要搞清楚,假设STL问题,那么问题出在哪里? STL能够简单地觉得就是算法+数据结构,全部容器的算法选择和实现都是经过精心设计和严格測试的 ...
- POJ3723 Conscription 【并检查集合】
Conscription Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8071 Accepted: 2810 Desc ...
- VS中实时获取SVN的版本号并写入到AssemblyInfo.cs中(C#)
原文:VS中实时获取SVN的版本号并写入到AssemblyInfo.cs中(C#) 在开发项目时,需要知道当前发布的到底是哪个版本,比较好的方式就是获取SVN的版本来作为项目的版本.项目版本一般由主版 ...
- NPM镜像设置方法!
使用npm安装一些包失败了的看过来(npm国内镜像介绍) 发布于 2012-4-26 04:19 最后一次编辑是 2013-12-11 23:21 这个也是网上搜的,亲自试过,非常好用! 镜像使用方法 ...
- WPF利用VisualTreeHelper遍历寻找对象的子级对象或者父级对象
原文:WPF利用VisualTreeHelper遍历寻找对象的子级对象或者父级对象 简介 本文将完整叙述我利用VisualTreeHelper实现题述功能的全部过程,想直接看函数实现的朋友可以跳到函数 ...
- Html 空格与换行
空格 换行 <br/> 调行距 <div style="line-height:10px"></div>
- Mysql事务,并发问题,锁机制-- 幻读、不可重复读--专题
1.什么是事务 事务是一条或多条数据库操作语句的组合,具备ACID,4个特点. 原子性:要不全部成功,要不全部撤销 隔离性:事务之间相互独立,互不干扰 一致性:数据库正确地改变状态后,数据库的一致性约 ...
- XAML的命名空间 - CSDN博客
原文:XAML的命名空间 - CSDN博客 一个最简单的XAML例子 <Window x:Class="WpfApplication1.MainWindow" xmlns=& ...