更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html

前向选择法和前向梯度法

由于前向选择法和前向梯度法的实现原理涉及过多的矩阵运算,本文只给出两种算法的思路。两者实现都是把矩阵中的向量运算具体化成平面几何中的向量运算。

一、前向选择法

前向选择法是一种典型的贪心算法。

通常用前向选择法解决线性模型的回归系数。对于一个有\(m\)个样本,每个样本有\(n\)个特征的训练集而言,假设可以拟合一个线性模型\(Y=\omega^TX\),其中\(Y\)是\(m*1\)的向量,\(X\)是\(m*n\)的矩阵,\(\omega\)是\(n*1\)的向量。即可通过前向选择法求得最小化该模型的参数\(\omega\)。

1.1 余弦相似度求投影

首先把矩阵\(X\)看成\(n\)个\(m*1\)的向量\(X_i \quad(i=1,2,\cdots,n)\),之后选择与向量\(Y\)余弦相似度最大,即与\(Y\)最为接近的一个变量\(X_i\),然后用\(X_i\)逼近\(Y\),即可得到

\[\hat{Y}=X_i\omega_i
\]

其中\(\omega_i={\frac{<X_i,Y>}{{||X_i||}^2}}\quad\text{余弦相似度}\),其中\(<X_i,Y>=|Y|*\cos\alpha\),\(\alpha\)是\(X_i\)和\(Y\)的夹角。

上述公式因此可以认为\(\hat{Y}\)是\(Y\)在\(X_i\)上的投影。

得到\(Y\)的接近值\(\hat{Y}\)后既可以得到残差值为\(Y_{err}=Y-\hat{Y}\),由于\(\hat{Y}\)是投影,则\(\hat{Y}\)和\(X_i\)是正交的,因此可以以\(Y_{err}\)为新的变量,从剩下的\(X_i\quad(i=1,2,i-1,i+2,\cdots,n)\)中,选择一个新的最接近残差\(Y_{err}\)的\(X_i\)重复上述投影和计算残差的流程,直至残差为0,停止算法。即可得到\(\omega\)。

1.2 举例

# 举例图例
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
%matplotlib inline
font = FontProperties(fname='/Library/Fonts/Heiti.ttc') # X1*w1
plt.annotate(xytext=(2, 5), xy=(8, 5), s='', color='r',
arrowprops=dict(arrowstyle="->", color='r'))
plt.text(6, 4.5, s='$X_1*\omega_1$', color='g')
# X2*w2
plt.annotate(xytext=(8, 5), xy=(9.3, 7.5), s='', color='r',
arrowprops=dict(arrowstyle="->", color='r'))
plt.text(9.3, 7, s='$X_2*\omega_2$', color='g')
# X1
plt.annotate(xytext=(2, 5), xy=(4, 5), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(2.5, 4.5, s='$X_1$', color='g')
# X2
plt.annotate(xytext=(2, 5), xy=(3, 7), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(2, 6, s='$X_2$', color='g')
# X2
plt.annotate(xytext=(8, 5), xy=(9, 7), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(8.2, 6.5, s='$X_2$', color='g')
# Y
plt.annotate(xytext=(2, 5), xy=(8, 8), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(5, 7.5, s='$Y$', color='g')
#
plt.annotate(xytext=(8, 5), xy=(8, 8), s='', color='r',
arrowprops=dict(arrowstyle="-", color='gray'))
plt.text(7.5, 6.5, s='$Y_1$', color='g')
#
plt.annotate(xytext=(8, 8), xy=(9.3, 7.5), s='',
arrowprops=dict(arrowstyle="-", color='gray'))
plt.text(8.5, 8, s='$Y_2$', color='g') plt.xlim(0, 11)
plt.ylim(2, 10)
plt.title('前向选择法举例', fontproperties=font, fontsize=20)
plt.show()

![png](http://www.chenyoude.com/ml/A-05 前向选择法和前向梯度法_7_0.png?x-oss-process=style/watermark)

上图假设\(X\)为\(2\)维,首先可以看出,离\(Y\)最接近的是\(X_1\),因此画出\(Y\)在\(X_1\)上的投影红线\(X_1*\omega_1\),此时残差为灰线\(Y_1\)。由于目前只剩下\(X_2\),所以接着用残差\(Y_1\)在\(X_2\)上投影得到红线\(X_2*\omega_2\),如果不只是\(X_2\),则选择最接近\(Y_1\)的\(X_i\)。此时的\(X_1\omega_1+X_2\omega_2\)则模拟了\(Y\),即\(\omega=[\omega_1,\omega_2]\)。

1.3 前向选择法优缺点

1.3.1 优点

  1. 算法对每个\(X_i\)只做一次操作,速度快。

1.3.2 缺点

  1. 由于变量\(X_i\)之间不是正交的,所以每次都必须做投影缩小残差,所以前向选择法最后只能给出一个局部近似解。(可以考虑下面的前向梯度法)

二、前向梯度法

前向梯度法类似于前向选择法,不同之处在于前向梯度法废除了前向选择法的投影逼近\(Y\),取而代之的是在每次最接近\(Y\)的向量\(X_i\)的方向上移动一小步,并且向量\(X_i\)移动会不会被剔除,而是继续从\(X_i \quad(i=1,2,i-1,i,i+1,\cdots,n)\)中选择一个最接近残差\(Y_{err}\)(注:残差计算方式类似于前向选择法)的向量\(X_i\),然后再走一小步,直至残差为0,停止算法,即可得到\(\omega\)。

2.1 举例

# 举例图例
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
%matplotlib inline
font = FontProperties(fname='/Library/Fonts/Heiti.ttc') # X1
plt.annotate(xytext=(2, 5), xy=(3, 5), s='', color='r',
arrowprops=dict(arrowstyle="->", color='r'))
plt.text(2.4, 4.8, s='$\epsilon{X_1}$', color='g')
# eX1
plt.annotate(xytext=(2, 5), xy=(4, 5), s='', color='r',
arrowprops=dict(arrowstyle="->", color='r'))
plt.text(3.2, 4.8, s='$\epsilon{X_1}$', color='g')
# eX1
plt.annotate(xytext=(2, 5), xy=(5, 5), s='', color='r',
arrowprops=dict(arrowstyle="->", color='r'))
plt.text(4.2, 4.8, s='$\epsilon{X_1}$', color='g')
# eX1
plt.annotate(xytext=(2, 5), xy=(2.8, 5), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(1.9, 4.8, s='$X_1$', color='g')
# eX1
plt.annotate(xytext=(6.1, 6.2), xy=(7, 6.2), s='', color='r',
arrowprops=dict(arrowstyle="->", color='r'))
plt.text(6.2, 6, s='$\epsilon{X_1}$', color='g') # ex2
plt.annotate(xytext=(5, 5), xy=(6.2, 6.2), s='', color='r',
arrowprops=dict(arrowstyle="->", color='r'))
plt.text(5.2, 5.8, s='$\epsilon{X_2}$', color='g')
# X2
plt.annotate(xytext=(2, 5), xy=(3, 6), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(2, 5.5, s='$X_2$', color='g')
# X2
plt.annotate(xytext=(5, 5), xy=(6, 6), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(5.6, 5.5, s='$X_2$', color='g') # Y
plt.annotate(xytext=(2, 5), xy=(8, 7), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(5, 6.2, s='$Y$', color='g') plt.annotate(xytext=(5, 5), xy=(8, 7), s='', color='r',
arrowprops=dict(arrowstyle="-", color='gray')) plt.xlim(1, 9)
plt.ylim(4, 8)
plt.title('前向梯度法举例', fontproperties=font, fontsize=20)
plt.show()

![png](http://www.chenyoude.com/ml/A-05 前向选择法和前向梯度法_17_0.png?x-oss-process=style/watermark)

上图假设\(X\)为\(2\)维,首先可以看出,离\(Y\)最接近的是\(X_1\),因此沿着向量\(X_i\)的方向走上一段距离,此处的\(\epsilon\)是一个手动调整的超参数,走了一段距离后发现,离残差\(Y_{err}\)最近接的还是\(X_1\),因此继续接着走一段距离,直到走到离残差\(Y_{err}\)最近的为\(X_2\)的时候,沿着向量\(X_2\)的方向走上一段距离,发现此时残差\(Y_{err}\)离\(X_1\)更近,则沿着\(X_1\)走一段距离,直到走到最后残差为0,停止算法,即可得到\(\omega\)。

2.2 前向梯度法优缺点

2.2.1 优点

  1. 可以手动控制\(\epsilon\)的大小,即可以控制算法的精准度,如果\(\epsilon\)较小的时候算法精准度很高

2.2.2 缺点

  1. \(\epsilon\)小,算法精准度高,同时算法迭代次数增加;\(\epsilon\)大,算法精准度降低。类似于梯度下降,这是前向梯度法较大的一个问题。(参考最小角回归法)

A-05 前向选择法和前向梯度法的更多相关文章

  1. iOS之计算上次日期距离现在多久, 如 xx 小时前、xx 分钟前等

    /**  *  计算上次日期距离现在多久  *  *  @param lastTime    上次日期(需要和格式对应)  *  @param format1     上次日期格式  *  @para ...

  2. 使用C#把发表的时间改为几年前,几个月,几天前,几小时前,几分钟前,或几秒前

    我们在评论中往往会看到多少天前,多少小时前. 实现原理:现在时间-过去时间 得到的时间差来做比较 下面我定义了一个Helper类,大家直接引用即可,参数就是时间差,注意时间差类型是TimeSpan类型 ...

  3. php 显示某一个时间相当于当前时间在多少秒前,多少分钟前,多少小时前

    /* *function:显示某一个时间相当于当前时间在多少秒前,多少分钟前,多少小时前 *timeInt:unix time时间戳 *format:时间显示格式 */ public function ...

  4. php计算几分钟前、几小时前、几天前的几个函数

    函数方法: /*php计算几分钟前.几小时前.几天前的几个函数*/ function get_date($time){ $t=time()-$time; $f=array( '31536000'=&g ...

  5. js 实现几分钟前、几小时前、几天前,以及几分钟后、几小时后、几天前后

    js 实现几分钟前.几小时前.几天前,以及几分钟后.几小时后.几天前后 /* * * 把传入的时间戳与当前时间比较,计算几分钟前.几小时前.几天前,以及几分钟后.几小时后.几天前后 * unixtim ...

  6. ****timeago.js插件:jquery实现几分钟前、几小时前、几天前等时间差显示效果的代码实例

    前端 时间个性化 插件 jquery.timeago.js 关键词 : 时间格式化 刚刚 N分钟前 N小时前 N天前 N月前 N年前 MM-dd hh:mm  或者  yyyy-MM-dd 前端: & ...

  7. python 获取几小时之前,几分钟前,几天前,几个月前,及几年前的具体时间

    引入以下两个包: import datetime import arrow 具体代码 # import datetime # import arrow def getTime(self, flag,d ...

  8. 使用C#把发表的时间改为几个月,几天前,几小时前,几分钟前,或几秒前

    //使用C#把发表的时间改为几个月,几天前,几小时前,几分钟前,或几秒前 //2008年03月15日 星期六 02:35 public string DateStringFromNow(DateTim ...

  9. js把字符串格式的时间转换成几秒前、几分钟前、几小时前、几天前等格式

    最近在做项目的时候,需要把后台返回的时间转换成几秒前.几分钟前.几小时前.几天前等的格式:后台返回的时间格式为:2015-07-30 09:36:10,需要根据当前的时间与返回的时间进行对比,最后显示 ...

随机推荐

  1. kubernetes Value:将磁盘挂载到容器,PV,PVC

    6.1.介绍卷 6.1.1.卷的类型 emptyDir-用于存储临时数据的简单空目录 hostPath-用于将目录从工作节点的文件系统挂载到pod nfs-挂载到pod中的NFS共享卷. 还有其他的如 ...

  2. 【Hystrix】实现服务隔离和降级

    一.背景 1.1 服务熔断 1.2 服务降级 1.3 服务隔离 1.4 总结 二.使用Hystrix实现服务隔离和降级 2.1 Hytrix 简介 2.2 线程池方式 2.3 信号量 三.项目搭建 3 ...

  3. 【Offer】[37] 【序列化二叉树】

    题目描述 思路分析 测试用例 Java代码 代码链接 题目描述 请实现两个函数,分别用来序列化和反序列化二叉树. 二叉树的序列化是指:把一棵二叉树按照某种遍历方式的结果以某种格式保存为字符串,从而使得 ...

  4. 【LeetCode】34-在排序数组中查找元素的第一个和最后一个位置

    题目描述 给定一个按照升序排列的整数数组 nums,和一个目标值 target.找出给定目标值在数组中的开始位置和结束位置. 你的算法时间复杂度必须是 O(log n) 级别. 如果数组中不存在目标值 ...

  5. C++ lambda的演化

    翻译自https://www.bfilipek.com/2019/02/lambdas-story-part1.html与https://www.bfilipek.com/2019/02/lambda ...

  6. BeetleX之FastHttpApi服务使用详解

    BeetleX是开个轻量级高性能的开源TCP通讯应用框架,通过BeetleX可以轻松扩展不同场的TCP应用服务和客户端组件.框架开源地址:https://github.com/IKende/Beetl ...

  7. rabbitmq+haproxy+keepalived高可用集群环境搭建

    1.先安装centos扩展源: # yum -y install epel-release 2.安装erlang运行环境以及rabbitmq # yum install erlang ... # yu ...

  8. 第一次参与国际空间站ISS 的SSTV活动

    先来看看本次 ISS 的 SSTV活动公告 SSTV Event planned for Early August ARISS News Release                         ...

  9. Java第三次作业第三题

    3. 请补充下面的Socket通信程序内容: (1)Socket通信中的服务端程序:ChatServerSocket.java package naizi; import java.io.*; imp ...

  10. ansible-playbook流程控制-loops循环使用

    1. ansible-playbook流程控制-loops循环使用    有时你想要多次重复任务.在计算机编程中,这称为循环.common ansible循环包括使用文件模块更改多个文件和/或目录的所 ...