FFT可以用来计算多项式乘法,但是复数的运算中含有大量的浮点数,精度较低。对于只有整数参与运算的多项式,有时,\(\text{NTT(Number-Theoretic Transform)}\)会是更好的选择。

若\(a,p\)互素,且\(p>1\),对于\(a^k \equiv 1 (\mod p)\)的最小的\(k\),称为\(a\)模\(p\)的,记做\(\sigma_p(a)\)。

\(E.g.\) \(\sigma_7(2)=3\)

\(2^1\equiv 2(\mod 7)\)

\(2^2\equiv 4(\mod 7)\)

\(2^3\equiv 1(\mod 7)\)

对于一个数\(g\),\(g\)的阶一定是\(p-1\)的约数。

证明:

假设最小的\(k\)不是\(p-1\)的约数,找到\(x\)满足\(xk>p-1>(x-1)k\),由费马小定理可知

\[g^{xk}\equiv g^{p-1}\equiv 1 \equiv g^{xk-(p-1)} (\mod p)
\]

\(xk-(p-1)<k\),与假设矛盾。

原根

定义

\(FFT\)中,我们使用单位复根\(\omega_n^k=\cos k\frac{2\pi}{n}+i\sin k\frac{2\pi}{n}\),那有没有什么能够代替单位复根且解决精度问题呢?这就是原根。

设\(m\)是正整数,\(a\)是整数,若\(a\)模\(m\)的阶等于\(\varphi(m)\),则称\(a\)为模\(m\)的一个原根

若\(p\)为质数,设\(g\)为\(p\)的原根,那么\(g^i \mod p(1<j<p,1\le i\le p-1)\)的结果两两不同。且其等价于\(g^{p-1}\equiv 1(\mod p)\)当且仅当指数为\(p-1\)的时候成立。(这里\(p\)是素数)

简单证明一下:

显然\(g^0 \equiv 1(\mod p)\)

由原根的定义可知满足\(g^{i} \equiv 1(\mod p)\)的最小正整数为\(\varphi(p)=p-1\)

故由指数循环节可知,\(g^i \mod p(1<j<p,1\le i\le p-1)\)的结果两两不同。

性质

考虑在FFT当中我们需要单位复根的以下性质:

  1. \(\omega_n^t\)互不相同,保证点值的合法性;

  2. \(\omega_{2n}^{2k} = \omega_n^k\),用于分治;

  3. \(\omega_n^{k+\frac{n}{2}} = -\omega_n^k\),用于分治;

  4. 当\(k\neq 0\)时,\(1+\omega_n^k+(\omega_n^k)^2+\dots +(\omega_n^k)^{n-1}=0\),用于逆变换。

性质一

令\(\omega_n=g^q\),\(1,g^q,g^{2q},\dots,g^{(n-1)q}\)互不相同,满足性质一

性质二

由\(\omega_n = g^q\)可知,\(\omega_{2n}=g^{\frac{q}{2}}(p=\frac{q}{2} \times 2n + 1)\),故\(\omega_{2n}^{2k} = g^{2k \frac{q}{2}}=g^{kq}=g^q\),满足性质二

性质三

根据费马小定理得

\[\omega_n^n=g^{nq}=g^{p-1}\equiv 1(\mod p)
\]

又因为\((\omega_n^{\frac{n}{2}})^2=\omega_n^n\),所以\(\omega_n^{\frac{n}{2}}\equiv \pm 1 (\mod p)\),而根据性质一可得\(\omega_n^{\frac{n}{2}}\neq \omega_n^0\),即\(\omega_n^{\frac{n}{2}}\equiv -1(\mod p)\)。可推出\(\omega_n^{k+\frac{n}{2}}=\omega_n^k \times \omega_n^{\frac{n}{2}}=-\omega_n^k (\mod p)\),满足性质三

性质四

当\(k\neq 0\)时

\[S(\omega_n^k)=1+\omega_n^k+(\omega_n^k)^2+\dots +(\omega_n^k)^{n-1}
\]

\[\omega_n^k S(\omega_n^k)=\omega_n^k+(\omega_n^k)^2+(\omega_n^k)^3+\dots +(\omega_n^k)^n
\]

\[\omega_n^k S(\omega_n^k)-S(\omega_n^k)=(\omega_n^k)^n-1
\]

\[S(\omega_n^k)=\frac{(\omega_n^k)^n-1}{\omega_n^k-1}
\]

性质三中的推论可知,\((\omega_n^k)^n-1=(\omega_n^n)^k-1\equiv \omega_n^n-1\equiv 0 (\mod p)\),故\(S(\omega_n^k)=0\),性质四成立。

求原根

求一个质数的原根,可以用枚举法——枚举\(g\),检验\(g\)是否为\(p\)的原根。

根据前面的关于阶知识可知,检验时,只需枚举\(p-1\)的所有约数\(q\),检验\(g^q\equiv 1(\mod p)\)即可。

代码实现

将\(FFT\)里所有关于\(\omega_n\)的运算替换成\(g^q\)在模意义下的运算即可,注意\(\div n\)要改为\(\times n^{-1}\)

#include <bits/stdc++.h>
using namespace std; typedef long long ll;
inline ll ty() {
char ch = getchar(); ll x = 0, f = 1;
while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); }
while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
return x * f;
} const int _ = 4e6 + 10;
const ll P = 998244353, G = 3, Gx = 332748118;
int N, M, r[_];
ll A[_], B[_]; ll ksm(ll a, ll b) {
ll ret = 1;
for ( ; b; b >>= 1) {
if (b & 1) ret = ret * a % P;
a = a * a % P;
}
return ret;
} void ntt(int lim, ll *a, int op) {
for (int i = 0; i < lim; ++i)
if (i < r[i]) swap(a[i], a[r[i]]);
for (int len = 2; len <= lim; len <<= 1) {
int mid = len >> 1;
ll Wn = ksm(op == 1 ? G : Gx, (P - 1) / len);
for (int i = 0; i < lim; i += len) {
ll w = 1;
for (int j = 0; j < mid; ++j, w = (w * Wn) % P) {
ll x = a[i + j], y = w * a[i + j + mid] % P;
a[i + j] = (x + y) % P;
a[i + j + mid] = (x - y + P) % P;
}
}
}
} int main() {
#ifndef ONLINE_JUDGE
freopen("ntt.in", "r", stdin);
freopen("ntt.out", "w", stdout);
#endif
N = ty(), M = ty();
for (int i = 0; i <= N; ++i) A[i] = (ty() + P) % P;
for (int i = 0; i <= M; ++i) B[i] = (ty() + P) % P;
int lim = 1, k = 0;
while (lim <= N + M) lim <<= 1, ++k;
for (int i = 0; i < lim ; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (k - 1));
ntt(lim, A, 1);
ntt(lim, B, 1);
for (int i = 0; i < lim; ++i) A[i] = (A[i] * B[i]) % P;
ntt(lim, A, -1);
ll invx = ksm(lim, P - 2);
for (int i = 0; i <= N + M; ++i)
printf("%lld ", (A[i] * invx) % P);
return 0;
}

参考资料

从傅里叶变换到数论变换 | Menci's Blog

快速数论变换(NTT)小结 - 自为风月马前卒 - 博客园

从傅里叶变换(FFT)到数论变换(NTT)的更多相关文章

  1. Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT

    Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...

  2. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  3. 【算法】快速数论变换(NTT)初探

    [简介] 快速傅里叶变换(FFT)运用了单位复根的性质减少了运算,但是每个复数系数的实部和虚部是一个余弦和正弦函数,因此系数都是浮点数,而浮点数的运算速度较慢且可能产生误差等精度问题,因此提出了以数论 ...

  4. 快速傅里叶变换(FFT)学习笔记(其二)(NTT)

    再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 写在前面 一些约定 前置知识 同余类和剩余系 欧拉定理 阶 原根 求原根 NTT ...

  5. 快速傅里叶变换FFT& 数论变换NTT

    相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...

  6. 高速数论变换(NTT)

    今天的A题.裸的ntt,但我不会,于是白送了50分. 于是跑来学一下ntt. 题面非常easy.就懒得贴了,那不是我要说的重点. 重点是NTT,也称高速数论变换. 在非常多问题中,我们可能会遇到在模意 ...

  7. 快速数论变换(NTT)小结

    NTT 在FFT中,我们需要用到复数,复数虽然很神奇,但是它也有自己的局限性--需要用double类型计算,精度太低 那有没有什么东西能够代替复数且解决精度问题呢? 这个东西,叫原根 原根 阶 若\( ...

  8. JZYZOJ 2041 快速数论变换 NTT 多项式

    http://172.20.6.3/Problem_Show.asp?id=2041 https://blog.csdn.net/ggn_2015/article/details/68922404 代 ...

  9. [快速数论变换 NTT]

    先粘一个模板.这是求高精度乘法的 #include <bits/stdc++.h> #define maxn 1010 using namespace std; char s[maxn]; ...

随机推荐

  1. 自己总结numpy用法

    最近用numpy比较多,边用边自己总结用法. 1. 数组 1.1 生成 m行 * n列 的随机数组 import numpy as np # 生成 m行*n列 的随机数组 # np.random.ra ...

  2. Flipcart 爬取流程

    第一步:爬取分类url from requests_html import HTMLSession session =HTMLSession() #https://www.flipkart.com/l ...

  3. [转]uipath orchestrator installation

    本文转自:https://dotnetbasic.com/2019/08/uipath-orchestrator-installation.html UiPath Orchestrator Insta ...

  4. Step by Step Process of Migrating non-CDBs and PDBs Using ASM for File Storage (Doc ID 1576755.1)

    Step by Step Process of Migrating non-CDBs and PDBs Using ASM for File Storage (Doc ID 1576755.1) AP ...

  5. LinuxPXE+Kickstrart无人值守安装服务

    要求:关闭VMware虚拟网络编辑器中自身的DHCP服务 主机名称 操作系统 IP地址 NoneOS Centos7 192.168.72.250 Custormer 无   1.挂在本地镜像源本配置 ...

  6. 导入Jar报错An internal error occurred during: "Building workspace". zip END header not found

    百度了好久都没有找到答案,后来新建了一个文件夹,再build path就正常了,不知道为什么

  7. Python selenium登录163邮箱示例

    思路:使用python自带的unittest单元测试框架测试163邮箱登录成功的case import unittestfrom selenium import webdriverimport tim ...

  8. 基于 CAS 无锁实现的 Disruptor.NET 居然慢于 BlockingCollection,是真的吗?

    StackOverflow 有人说自己的Disruptor.NET 代码比 BlockingCollection 还有慢 2 倍,并且把完整代码贴出,楼下几个老外也的回复说了一堆,但是没研究出个所以然 ...

  9. Windows10安装ubuntu16.04双系统教程

    写在前面:本教程为windows10安装ubuntu16.04(64位)双系统教程,是我多次安装双系统的经验总结,安装方法同样适用于ubuntu18.04(64位).为了直观和易于理解,我会尽量图文并 ...

  10. 基于 Swoole 的微信扫码登录

    随着微信的普及,扫码登录方式越来越被现在的应用所使用.它因为不用去记住密码,只要有微信号即可方便快捷登录.微信的开放平台原生就有支持扫码登录的功能,不过大部分人还是在用公众平台,所以扫码登录只能自行实 ...