FFT可以用来计算多项式乘法,但是复数的运算中含有大量的浮点数,精度较低。对于只有整数参与运算的多项式,有时,\(\text{NTT(Number-Theoretic Transform)}\)会是更好的选择。

若\(a,p\)互素,且\(p>1\),对于\(a^k \equiv 1 (\mod p)\)的最小的\(k\),称为\(a\)模\(p\)的,记做\(\sigma_p(a)\)。

\(E.g.\) \(\sigma_7(2)=3\)

\(2^1\equiv 2(\mod 7)\)

\(2^2\equiv 4(\mod 7)\)

\(2^3\equiv 1(\mod 7)\)

对于一个数\(g\),\(g\)的阶一定是\(p-1\)的约数。

证明:

假设最小的\(k\)不是\(p-1\)的约数,找到\(x\)满足\(xk>p-1>(x-1)k\),由费马小定理可知

\[g^{xk}\equiv g^{p-1}\equiv 1 \equiv g^{xk-(p-1)} (\mod p)
\]

\(xk-(p-1)<k\),与假设矛盾。

原根

定义

\(FFT\)中,我们使用单位复根\(\omega_n^k=\cos k\frac{2\pi}{n}+i\sin k\frac{2\pi}{n}\),那有没有什么能够代替单位复根且解决精度问题呢?这就是原根。

设\(m\)是正整数,\(a\)是整数,若\(a\)模\(m\)的阶等于\(\varphi(m)\),则称\(a\)为模\(m\)的一个原根

若\(p\)为质数,设\(g\)为\(p\)的原根,那么\(g^i \mod p(1<j<p,1\le i\le p-1)\)的结果两两不同。且其等价于\(g^{p-1}\equiv 1(\mod p)\)当且仅当指数为\(p-1\)的时候成立。(这里\(p\)是素数)

简单证明一下:

显然\(g^0 \equiv 1(\mod p)\)

由原根的定义可知满足\(g^{i} \equiv 1(\mod p)\)的最小正整数为\(\varphi(p)=p-1\)

故由指数循环节可知,\(g^i \mod p(1<j<p,1\le i\le p-1)\)的结果两两不同。

性质

考虑在FFT当中我们需要单位复根的以下性质:

  1. \(\omega_n^t\)互不相同,保证点值的合法性;

  2. \(\omega_{2n}^{2k} = \omega_n^k\),用于分治;

  3. \(\omega_n^{k+\frac{n}{2}} = -\omega_n^k\),用于分治;

  4. 当\(k\neq 0\)时,\(1+\omega_n^k+(\omega_n^k)^2+\dots +(\omega_n^k)^{n-1}=0\),用于逆变换。

性质一

令\(\omega_n=g^q\),\(1,g^q,g^{2q},\dots,g^{(n-1)q}\)互不相同,满足性质一

性质二

由\(\omega_n = g^q\)可知,\(\omega_{2n}=g^{\frac{q}{2}}(p=\frac{q}{2} \times 2n + 1)\),故\(\omega_{2n}^{2k} = g^{2k \frac{q}{2}}=g^{kq}=g^q\),满足性质二

性质三

根据费马小定理得

\[\omega_n^n=g^{nq}=g^{p-1}\equiv 1(\mod p)
\]

又因为\((\omega_n^{\frac{n}{2}})^2=\omega_n^n\),所以\(\omega_n^{\frac{n}{2}}\equiv \pm 1 (\mod p)\),而根据性质一可得\(\omega_n^{\frac{n}{2}}\neq \omega_n^0\),即\(\omega_n^{\frac{n}{2}}\equiv -1(\mod p)\)。可推出\(\omega_n^{k+\frac{n}{2}}=\omega_n^k \times \omega_n^{\frac{n}{2}}=-\omega_n^k (\mod p)\),满足性质三

性质四

当\(k\neq 0\)时

\[S(\omega_n^k)=1+\omega_n^k+(\omega_n^k)^2+\dots +(\omega_n^k)^{n-1}
\]

\[\omega_n^k S(\omega_n^k)=\omega_n^k+(\omega_n^k)^2+(\omega_n^k)^3+\dots +(\omega_n^k)^n
\]

\[\omega_n^k S(\omega_n^k)-S(\omega_n^k)=(\omega_n^k)^n-1
\]

\[S(\omega_n^k)=\frac{(\omega_n^k)^n-1}{\omega_n^k-1}
\]

性质三中的推论可知,\((\omega_n^k)^n-1=(\omega_n^n)^k-1\equiv \omega_n^n-1\equiv 0 (\mod p)\),故\(S(\omega_n^k)=0\),性质四成立。

求原根

求一个质数的原根,可以用枚举法——枚举\(g\),检验\(g\)是否为\(p\)的原根。

根据前面的关于阶知识可知,检验时,只需枚举\(p-1\)的所有约数\(q\),检验\(g^q\equiv 1(\mod p)\)即可。

代码实现

将\(FFT\)里所有关于\(\omega_n\)的运算替换成\(g^q\)在模意义下的运算即可,注意\(\div n\)要改为\(\times n^{-1}\)

#include <bits/stdc++.h>
using namespace std; typedef long long ll;
inline ll ty() {
char ch = getchar(); ll x = 0, f = 1;
while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); }
while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
return x * f;
} const int _ = 4e6 + 10;
const ll P = 998244353, G = 3, Gx = 332748118;
int N, M, r[_];
ll A[_], B[_]; ll ksm(ll a, ll b) {
ll ret = 1;
for ( ; b; b >>= 1) {
if (b & 1) ret = ret * a % P;
a = a * a % P;
}
return ret;
} void ntt(int lim, ll *a, int op) {
for (int i = 0; i < lim; ++i)
if (i < r[i]) swap(a[i], a[r[i]]);
for (int len = 2; len <= lim; len <<= 1) {
int mid = len >> 1;
ll Wn = ksm(op == 1 ? G : Gx, (P - 1) / len);
for (int i = 0; i < lim; i += len) {
ll w = 1;
for (int j = 0; j < mid; ++j, w = (w * Wn) % P) {
ll x = a[i + j], y = w * a[i + j + mid] % P;
a[i + j] = (x + y) % P;
a[i + j + mid] = (x - y + P) % P;
}
}
}
} int main() {
#ifndef ONLINE_JUDGE
freopen("ntt.in", "r", stdin);
freopen("ntt.out", "w", stdout);
#endif
N = ty(), M = ty();
for (int i = 0; i <= N; ++i) A[i] = (ty() + P) % P;
for (int i = 0; i <= M; ++i) B[i] = (ty() + P) % P;
int lim = 1, k = 0;
while (lim <= N + M) lim <<= 1, ++k;
for (int i = 0; i < lim ; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (k - 1));
ntt(lim, A, 1);
ntt(lim, B, 1);
for (int i = 0; i < lim; ++i) A[i] = (A[i] * B[i]) % P;
ntt(lim, A, -1);
ll invx = ksm(lim, P - 2);
for (int i = 0; i <= N + M; ++i)
printf("%lld ", (A[i] * invx) % P);
return 0;
}

参考资料

从傅里叶变换到数论变换 | Menci's Blog

快速数论变换(NTT)小结 - 自为风月马前卒 - 博客园

从傅里叶变换(FFT)到数论变换(NTT)的更多相关文章

  1. Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT

    Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...

  2. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  3. 【算法】快速数论变换(NTT)初探

    [简介] 快速傅里叶变换(FFT)运用了单位复根的性质减少了运算,但是每个复数系数的实部和虚部是一个余弦和正弦函数,因此系数都是浮点数,而浮点数的运算速度较慢且可能产生误差等精度问题,因此提出了以数论 ...

  4. 快速傅里叶变换(FFT)学习笔记(其二)(NTT)

    再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 写在前面 一些约定 前置知识 同余类和剩余系 欧拉定理 阶 原根 求原根 NTT ...

  5. 快速傅里叶变换FFT& 数论变换NTT

    相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...

  6. 高速数论变换(NTT)

    今天的A题.裸的ntt,但我不会,于是白送了50分. 于是跑来学一下ntt. 题面非常easy.就懒得贴了,那不是我要说的重点. 重点是NTT,也称高速数论变换. 在非常多问题中,我们可能会遇到在模意 ...

  7. 快速数论变换(NTT)小结

    NTT 在FFT中,我们需要用到复数,复数虽然很神奇,但是它也有自己的局限性--需要用double类型计算,精度太低 那有没有什么东西能够代替复数且解决精度问题呢? 这个东西,叫原根 原根 阶 若\( ...

  8. JZYZOJ 2041 快速数论变换 NTT 多项式

    http://172.20.6.3/Problem_Show.asp?id=2041 https://blog.csdn.net/ggn_2015/article/details/68922404 代 ...

  9. [快速数论变换 NTT]

    先粘一个模板.这是求高精度乘法的 #include <bits/stdc++.h> #define maxn 1010 using namespace std; char s[maxn]; ...

随机推荐

  1. pandas 初识(五)

    1. 如何实现把一个属性(列)拆分成多列,产生pivot,形成向量信息,计算相关性? 例: class_ timestamp count 0 10 2019-01-20 13:23:00 1 1 10 ...

  2. springcloud~配置中心~对敏感信息加密

    简介 RSA非对称加密有着非常强大的安全性,HTTPS的SSL加密就是使用这种方法进行HTTPS请求加密传输的.因为RSA算法会涉及Private Key和Public Key分别用来加密和解密,所以 ...

  3. 如何正确使用 Spring Cloud?【下】

    5. Spring Cloud 如何融合 DevOps? 接下来,我们来了解一下 Spring Cloud 在与 DevOps 融合方面可以做哪些事情,它是如何让应用持续交付更加快捷的?我们都知道,D ...

  4. Ubuntu Server 上使用Docker Compose 部署Nexus(图文教程)

    场景 Docker-Compose简介与Ubuntu Server 上安装Compose: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/deta ...

  5. Markdown: color list

    Color name | hex character | Name AliceBlue #F0F8FF rgb(240, 248, 255) AntiqueWhite #FAEBD7 rgb(250, ...

  6. 【Golang基础】defer执行顺序

    defer 执行顺序类似栈的先入后出原则(FILO)     一个defer引发的小坑:打开文件,读取内容,删除文件   // 原始问题代码 func testFun(){ // 打开文件 file, ...

  7. 2019-2020-1 20199305《Linux内核原理与分析》第十二周作业

    缓冲区溢出漏洞实验 (一)何为缓冲区溢出漏洞 缓冲区溢出是指程序试图向缓冲区写入超出预分配固定长度数据的情况.这一漏洞可以被恶意用户利用来改变程序的流控制,甚至执行代码的任意片段.这一漏洞的出现是由于 ...

  8. Deepnude算法“tuo”衣服

    PS:我不是偷窥狂.我是技术的爱好者 换脸视频后AI又出偏门应用:用算法“tuo”女性衣服 据美国科技媒体Motherboard报道,一名程序员最近开发出一款名叫DeepNude的应用,只要给Deep ...

  9. MFC图形编辑界面工具

    一.背景 喔,五天的实训终于结束了,学校安排的这次实训课名称叫高级程序设计实训,但在我看来,主要是学习了Visual C++ .NET所提供的MFC(Microsoft Foundation Clas ...

  10. python进程基础点整理

    操作系统 串行: 一个程序完完整整的执行完再执行下一个 并发: 看起来像是同时运行,其实就是程序间的切换频率比较快,看不出来 并行:真正的同时运行 多道技术 空间复用:共用一个内存条,多个进程相互隔离 ...