[Mathematics][MIT 18.02]Detailed discussions about 2-D and 3-D integral and their connections
Since it is just a sort of discussion, I will just give the formula and condition without proving them or leaving examples.
General:
Line integral(Work and in the plane)
$\int_{C}\vec{F}\cdot \mathrm{d}\vec{r} = \int_{C}M\mathrm{d}x+N\mathrm{d}y$, in which $\vec{F} = <M,N>$
Method: Express $x$ and $y$ in a single variable (OR means parameterization).
Gradient fields & path-independence
Condition:
$curl(\vec{F}) = 0$ and $\vec{F}$ is defined in a simple-connected region, in which $curl(\vec{F}) = N_{x} - M_{y}$ if $\vec{F} = <M,N>$ and $curl(\vec{F}) = \nabla\times\vec{F}$(namely
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{vmatrix}
) if $\vec{F} = <P,Q,R>$
then $vec{F} = \nabla f$, or $vec{F}$ is the partial derivative vector of some vector field.
The method of finding the potential:
Method 1. Do line integral. Integral along the x-axis and y-axis and z-axis, if they exist. (Using path-independence)
Method 2. Integral one component of $\vec{F}$ and then differential it over another variable and compare. (...)
Flux in plane & space
in the plane:
$\hat{n} = \hat{T}$ rotated 90 degrees clockwise $=<\mathrm{d}y,-\mathrm{d}x>$
$\int_{C}\vec{F}\cdot\hat{n}\mathrm{d}s = \int_{C}P\mathrm{d}y-Q\mathrm{d}x$, in which $\vec{F} = <P,Q>$
in the space(or specifically, surface):
$\iint_{S}\vec{F}\cdot\hat{n}\mathrm{d}S = \iint_{S}\vec{F}\cdot(<-f_{x},-f_{y},1>\mathrm{d}x\mathrm{d}y)$, if we use $z = f(x,y)$ to describe the surface.
$=\iint_{S}\vec{F}\cdot(\pm\frac{\vec{N}}{\vec{N}\cdot\hat{k}}\mathrm{d}x\mathrm{d}y)$, if we are given the normal vector of the surface,or specifically, $g(x,y,z) = 0$
Association:
[Mathematics][MIT 18.02]Detailed discussions about 2-D and 3-D integral and their connections的更多相关文章
- [Mathematics][MIT 18.03] Detailed Explanation of the Frequency Problems in Second-Order Differential Equation of Oscillation System
Well, to begin with, I'd like to say thank you to MIT open courses twice. It's their generosity that ...
- [Mathematics][MIT 18.03] Proof of a Theory about the Solution to Second-order Linear Homogeneous Differential Equation
At first, I'd like to say thank you to MIT open courses which give me the privilege to enjoy the mos ...
- PYTHON替代MATLAB在线性代数学习中的应用(使用Python辅助MIT 18.06 Linear Algebra学习)
前言 MATLAB一向是理工科学生的必备神器,但随着中美贸易冲突的一再升级,禁售与禁用的阴云也持续笼罩在高等学院的头顶.也许我们都应当考虑更多的途径,来辅助我们的学习和研究工作. 虽然PYTHON和众 ...
- POJ3273 Monthly Expense 2017-05-11 18:02 30人阅读 评论(0) 收藏
Monthly Expense Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 25959 Accepted: 10021 ...
- Oracle PLSQL Demo - 18.02.管道function[查询零散的字段组成list管道返回] [字段必须对上]
--PACKAGE CREATE OR REPLACE PACKAGE test_141215 is TYPE type_ref IS record( ENAME ), SAL )); TYPE t_ ...
- [MIT 18.06 线性代数]Intordution to Vectors向量初体验
目录 1.1. Vectors and Linear Combinations向量和线性组合 REVIEW OF THE KEY IDEAS 1.2 Lengths and Dot Products向 ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- mit课程ocw-mathematics
https://ocw.mit.edu/courses/find-by-topic/#cat=mathematics Course # Course Title Level 1.010 Uncerta ...
- MIT挑战(如何在12个月内自学完成MIT计算机科学的33门课程|内附MIT公开课程资源和学习顺序
译者注:本文译自Scott H. Young的博客,Scott拥有超强的学习能力,曾在12个月内自学完成麻省理工学院计算机科学的33门课程.本文就是他个人对于这次MIT挑战的介绍和总结. 版权声明:本 ...
随机推荐
- Redis集群的离线安装以及原理理解
一.本文主要是记录一下Redis集群在linux系统下离线的安装步骤,毕竟在生产环境下一般都是无法联网的,Redis的集群的Ruby环境安装过程还是很麻烦的,涉及到很多的依赖的安装,所以写了一个文章来 ...
- kafka对消费者分配分区规则(Java源码)
在上一篇 kafka topic消息分配partition规则(Java源码) 我们对生产者产生的消息分配partition规则进行了分析,那么本章我们来看看消费者是怎么样分配partition的. ...
- VMware Workstation Fixed Unable to connect to the MKS
场景:早上开虚拟机时突然报这个错 解决办法如下: 以管理员的身份打开CMD,然后执行如下命令: net start vmx86 net start hcmon net start vmauthdser ...
- 基于STC89C52的oled红外遥控闹钟
这个红外遥控主要是程序通过对按下的键的键码进行解析,并运行相应的功能代码 一次按键动作的遥控编码信息为 32 位串行二进制码.对于二进制信号“0”,一个脉冲占 1.2ms:对于二进制信号“1”,一个脉 ...
- 小白专场-是否同一颗二叉搜索树-python语言实现
目录 一.二叉搜索树的相同判断 二.问题引入 三.举例分析 四.方法探讨 4.1 中序遍历 4.2 层序遍历 4.3 先序遍历 4.4 后序遍历 五.总结 六.代码实现 一.二叉搜索树的相同判断 二叉 ...
- 浅谈Linux进程管理
一 查看系统进程 在linux中,查看系统进程的命令为ps,常用格式为如下两个: (1)ps aux:unix格式查看系统进程 (2)ps -le:linux格式查看系统进程 一般地,ps aux更 ...
- MyEclipse中的web项目之前有个感叹号
java web项目有感叹号说明导入的jar包存在问题 或者环境配置不正确 解决办法是点击项目-->Build path -->configure Build Path 然后来到Libra ...
- Kubernetes的Secret对象的使用
Secret可以想要访问的加密数据,存放到Etcd中,Pod可以通过的Volume的方式,访问到Secret保存的信息 ,当数据修改的时候,Pod挂载的Secret文件也会被修改 一.创建Secret ...
- 整理总结 python 中时间日期类数据处理与类型转换(含 pandas)
我自学 python 编程并付诸实战,迄今三个月. pandas可能是我最高频使用的库,基于它的易学.实用,我也非常建议朋友们去尝试它.--尤其当你本身不是程序员,但多少跟表格或数据打点交道时,pan ...
- Oracle clob列union的方法(ORA-00932)
今天在做“站内搜索”数据抽取时,为了能将多个相似的数据库表数据合并,使用了SQL中union关键字,期望将多个单独的SQL查询结果合并到一起.每个单独的SQL都能成功执行,在union合并的过程中遇到 ...