Since it is just a sort of discussion, I will just give the formula and condition without proving them or leaving examples.

General:

  • Line integral(Work and in the plane)

    $\int_{C}\vec{F}\cdot \mathrm{d}\vec{r} = \int_{C}M\mathrm{d}x+N\mathrm{d}y$, in which $\vec{F} = <M,N>$

      Method: Express $x$ and $y$ in a single variable (OR means parameterization).

  • Gradient fields & path-independence

    Condition:

      $curl(\vec{F}) = 0$ and $\vec{F}$ is defined in a simple-connected region, in which $curl(\vec{F}) = N_{x} - M_{y}$ if $\vec{F} = <M,N>$ and $curl(\vec{F}) = \nabla\times\vec{F}$(namely

\begin{vmatrix}

\hat{i} & \hat{j} & \hat{k} \\

\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\

P & Q & R

\end{vmatrix}

) if $\vec{F} = <P,Q,R>$

      then $vec{F} = \nabla f$, or $vec{F}$ is the partial derivative vector of some vector field.

    The method of finding the potential:

      Method 1. Do line integral. Integral along the x-axis and y-axis and z-axis, if they exist. (Using path-independence)

      Method 2. Integral one component of $\vec{F}$ and then differential it over another variable and compare. (...)

  • Flux in plane & space

    in the plane:

      $\hat{n} = \hat{T}$ rotated 90 degrees clockwise $=<\mathrm{d}y,-\mathrm{d}x>$

      $\int_{C}\vec{F}\cdot\hat{n}\mathrm{d}s = \int_{C}P\mathrm{d}y-Q\mathrm{d}x$, in which $\vec{F} = <P,Q>$

    in the space(or specifically, surface):

      $\iint_{S}\vec{F}\cdot\hat{n}\mathrm{d}S = \iint_{S}\vec{F}\cdot(<-f_{x},-f_{y},1>\mathrm{d}x\mathrm{d}y)$, if we use $z = f(x,y)$ to describe the surface.

                        $=\iint_{S}\vec{F}\cdot(\pm\frac{\vec{N}}{\vec{N}\cdot\hat{k}}\mathrm{d}x\mathrm{d}y)$, if we are given the normal vector of the surface,or specifically, $g(x,y,z) = 0$

Association:

[Mathematics][MIT 18.02]Detailed discussions about 2-D and 3-D integral and their connections的更多相关文章

  1. [Mathematics][MIT 18.03] Detailed Explanation of the Frequency Problems in Second-Order Differential Equation of Oscillation System

    Well, to begin with, I'd like to say thank you to MIT open courses twice. It's their generosity that ...

  2. [Mathematics][MIT 18.03] Proof of a Theory about the Solution to Second-order Linear Homogeneous Differential Equation

    At first, I'd like to say thank you to MIT open courses which give me the privilege to enjoy the mos ...

  3. PYTHON替代MATLAB在线性代数学习中的应用(使用Python辅助MIT 18.06 Linear Algebra学习)

    前言 MATLAB一向是理工科学生的必备神器,但随着中美贸易冲突的一再升级,禁售与禁用的阴云也持续笼罩在高等学院的头顶.也许我们都应当考虑更多的途径,来辅助我们的学习和研究工作. 虽然PYTHON和众 ...

  4. POJ3273 Monthly Expense 2017-05-11 18:02 30人阅读 评论(0) 收藏

    Monthly Expense Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 25959   Accepted: 10021 ...

  5. Oracle PLSQL Demo - 18.02.管道function[查询零散的字段组成list管道返回] [字段必须对上]

    --PACKAGE CREATE OR REPLACE PACKAGE test_141215 is TYPE type_ref IS record( ENAME ), SAL )); TYPE t_ ...

  6. [MIT 18.06 线性代数]Intordution to Vectors向量初体验

    目录 1.1. Vectors and Linear Combinations向量和线性组合 REVIEW OF THE KEY IDEAS 1.2 Lengths and Dot Products向 ...

  7. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

  8. mit课程ocw-mathematics

    https://ocw.mit.edu/courses/find-by-topic/#cat=mathematics Course # Course Title Level 1.010 Uncerta ...

  9. MIT挑战(如何在12个月内自学完成MIT计算机科学的33门课程|内附MIT公开课程资源和学习顺序

    译者注:本文译自Scott H. Young的博客,Scott拥有超强的学习能力,曾在12个月内自学完成麻省理工学院计算机科学的33门课程.本文就是他个人对于这次MIT挑战的介绍和总结. 版权声明:本 ...

随机推荐

  1. equals、==、hashCode

    equals和==的区别 ==主要用来比较基本数据类型,而equal主要用来比较对象是否相等.equal是Object的方法. 如果两者都用来比较对象的相等性,那么如果两个引用地址相同,那么==就返回 ...

  2. 《剑指offer》:[62]序列化二叉树

    题目:请实现两个函数,分别来序列化和反序列化二叉树. 方案分析:我们知道通过二叉树的中序和任何一个前或者后续遍历都可以反序列化一棵二叉树,但是这样做有一个缺点就是,序列化的数据不能有重复的数据,否则会 ...

  3. Net基础篇_学习笔记_第十天_方法(函数)

    方法(函数): 函数就是将一堆代码进行重用的一种机制.//解决冗余代码问题------方法出现了.            面向对象的三大特征:封装.继承.多态 函数的语法:[public] stati ...

  4. 去掉first li 的list图标

    ul中,第一个 li 前的小图标,默认情况下为小圆点,在这种情况下,给 first li 设置 list-style-type: none;可以成功去除前面的小圆点的. 当给 li 设置了 list ...

  5. Cabloy全栈JS框架微创新之一:不一样的“移动优先 PC适配”

    前言 目前流行的前端UI组件库都支持移动设备优先的响应式布局特性.但基于Mobile和PC两个场景的不同用户体验,也往往会实现Mobile和PC两个版本. PC场景下的Web工程,如大量的后台前端管理 ...

  6. Centos利用脚本自动安装jdk

        在工作中还有自己的学习中,无论是使用tar包安装jdk,还是使用rpm安装,如果单台机器还能够接受,但是如果多台机器,就很困扰.所以,在自己配置环境的时候,根据网上各位前辈,沉淀了这样子一个脚 ...

  7. 【linux】【jdk】jdk8.0安装

    系统环境:Centos7 一.下载jdk8.0 jdk官方网站:https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downlo ...

  8. Ubuntu+docker+gitlab安装和使用

    以前自己写的代码都是在本地,因为都是自己一个人维护,现在交给团队维护了,所以想着搭建一个gitlab 1,拉镜像 安装非常简单 docker search gitlab  搜索镜像 docker pu ...

  9. FileDetail

    import org.apache.hadoop.conf.*; import org.apache.hadoop.fs.*; import java.io.IOException; import j ...

  10. FastDfs之TrackerServer的详细配置介绍

    # is this config file disabled # false for enabled # true for disabled disabled=false #当前配置是否不可用fals ...