是LCT了。

首先我们不知道联通块怎么数。

然后颓标签知道了是LCT。

那么考虑一下怎么LCT搞。

有一个很普遍的思路大家也应该都知道,就是如何求一个区间中某种颜色的个数。

这个可以很简单的用主席树来实现对吧,只需要记录下来这种颜色上次出现的位置就可以了,然后在$[l,r]$中查询值在$[0,l-1]$中的数的个数。

然后联通块和这个有什么关系呢?

颜色的话为什么可以用这种方法代替呢?为了去重,而这道题中什么情况是所谓“重”的呢?

就是两条边链接了两个相同的集合的时候。

那么考虑以下一种算法。

用LCT维护生成树。动态加边,并查集维护联通性。

如果当前这条边链接的两个端点已经在一个集合中了,那么说明这条边可以替代掉之前的某一条边,记为$res[i]$那么这条边能够连接某两个集合的时候也就是在$[res[i]+1,i]$这个区间中,在LCT中查询最早的$res[i]$那么也就是当前这条边所能其作用的最早的端点,同时LCT删掉res[i],link上i。

如果当前这条边链接的两个端点没有在一个集合中,直接link上i。

那么考虑一个区间的答案。

每增加一个新的可以链接这个联通块的边,那么n个集合会变成n-1个。

也就是说,答案就是n减去这些边中真正能够链接两个不再同一集合中端点的边的个数。

那么其实也就是这段区间中$res$值小于$l-1$的数的个数。

主席树维护即可。

得解。

「刷题」GERALD07加强版的更多相关文章

  1. 「刷题」THUPC泛做

    刷了一下,写一下. T1. 天天爱射击 可以这样想. 我们二分一下每一块木板在什么时刻被击碎. 然后直接用主席树维护的话是\(O(nlog^2n)\)的. 会\(T\),而且是一分不给那种... 那么 ...

  2. 「刷题」JZPKIL

    这道反演题,真牛逼. 以下用$B$代表伯努利数,$l*g=f$代表狄利克雷卷积,先推式子. 对于给出的$n,x,y$求一百组数据的$ans$ $\begin{array}{rcl} ans & ...

  3. 「刷题」Triple

    正解是普通型母函数+FFT. 才学了多项式,做了一道比较好的题了. 首先有三个斧子被偷了. 我们考虑构造一种普通型母函数. 就是说一种多项式吧,我的理解. 系数是方案,下标,也就是所谓的元指数代表的是 ...

  4. 「刷题」xor

    说实话这道题没有A掉,不过所有的思路都是我自己想的,我觉得这个思路真的很棒很棒很棒的. 首先这个题的题面描述告诉我这种运算有封闭性,满足结合律和交换率,那么其实这个东西是个群运算了,而且这个群有单位元 ...

  5. 「刷题」可怜与STS

    又是一道假期望,我们发现一共有$ C_{2n}^m $种情况. 而$ \frac{(2n)!}{m!(2n-m)!}=C_{2n}^m $ 其实结果就是各个情况总伤害. 1.10分算法,爆搜10分. ...

  6. 「刷题」Color 群论

    这道题乍一看挺水的,直接$ Ploya $就可以了,可是再看看数据范围:n<=1e9 那就是有1e9种置换,这不歇比了. 于是考虑式子的优化. 首先证明,转i次的置换的每个循环结大小是 $ gc ...

  7. 「刷题」卡特兰数&prufer序列

    1.网格 转换模型,翻折容斥出解. 2.有趣的数列 抽象一下模型,把奇数项当作横坐标,偶数项当作纵坐标,就是从n*n矩阵左下角走到右上角并且每一步x<=y的方案数,发现是卡特兰数,关于gcd,可 ...

  8. 「刷题笔记」AC自动机

    自动AC机 Keywords Research 板子题,同luoguP3808,不过是多测. 然后多测不清空,\(MLE\)两行泪. 板子放一下 #include<bits/stdc++.h&g ...

  9. P6222 「简单题」加强版 莫比乌斯反演 线性筛积性函数

    LINK:简单题 以前写过弱化版的 不过那个实现过于垃圾 少预处理了一个东西. 这里写一个实现比较精细了. 最后可推出式子:\(\sum_{T=1}^nsum(\frac{n}{T})\sum_{x| ...

随机推荐

  1. react native ios 上架

    1.申请开发者账号,去苹果开发者中心申请 2.applicationloader 集申请证书.真机调试.发布于一身,避免繁琐的官网申请过程 http://www.applicationloader.n ...

  2. uniapp 与C# 加解密

    1 uni-app操作 (1) 打开HBuilderX的视图->显示终端 cd 切换到你项目的根目录 执行命令 npm install crypto-js 安装成功后你的项目根目录会生成node ...

  3. BS结构的一个注册用户的功能

    注册用户功能   学了Java一段时间,就想折腾折腾,就做了一个注册的功能,用HTML写了一个网页上的比较简陋的界面,用Java做了一个后台简陋的服务器处理数据,最后将数据存储到数据库中. 注册界面 ...

  4. msf之hash攻击

    使用hashdump抓取密码(需要系统管理权限) 另外一个更强大的模块 smart_hashdump 如果目标是win7 就需要先绕过UAC 还可以使用msf内置的mimikatz抓取hash msv ...

  5. 经验分享:程序员如何快速定位问题(BUG)

    让我掉下眼泪的 不止内存泄漏 让我夜夜不眠的 不止你的需求 明天还要改多久 你攥着我的手 让我感到为难的 是善变的需求 发布总是在半夜 回滚是永远的愁 错误(Bug)随时的暴漏 困扰着我心头 作为程序 ...

  6. java控制执行流程

    控制执行流程 欢迎转载,转载烦请注明出处,谢谢. https://www.cnblogs.com/sx-wuyj/p/11177257.html java当中涉及到的关键字包括if-else.whil ...

  7. nginx::升级到最新nginx

    ubuntu16. 升级nginx到最新版本 wget http://nginx.org/keys/nginx_signing.key sudo apt-key add nginx_signing.k ...

  8. 12.Nginx代理与负载均衡

    1.什么是代理? 代为办理 --> 代理 2.Nginx正向代理.反向代理 正向代理: --> 上网 | 路由器替代 反向代理: --> 正向与反向代理的区别: 区别在于形式上服务的 ...

  9. 3、Struts2的API访问和数据封装

    一.API的访问 在使用Struts2的框架的过程中,发现Struts2和Servlet的API是解耦合的.在实际开发中,经常使用到Servlet的API,比如进行登录,将用户的信息保存到Sessio ...

  10. java.lang.OutOfMemoryError GC overhead limit exceeded原因分析及解决方案

    最近一个上线运行良好的项目出现用户无法登录或者执行某个操作时,有卡顿现象.查看了日志,出现了大量的java.lang.OutOfMemoryError: GC overhead limit excee ...