spark Streaming与kafka的集成消费
Spark 2.3.3 Kafka 2.11-1.0.2 Java jdk1.8.0_191 Hbase 1.2.11
from pyspark import SparkConf,SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils,TopicAndPartition KAFKA_BROKER_LIST = "10.2.XX.XX:9092,10.2.XX.XX:9092,10.2.XX.XX:9092"
KAFKA_TOPICS = ["streamingTest"]
SPARK_STREAMING_TIME_DELAY = 5
kafka_topic_partition_offset_ranges = []
LOCAL_OFFSET_FILE = "offset_test.txt" def get_offset_ranges(rdd):
global kafak_topic_partition_offset_ranges
kafka_topic_partition_offset_ranges = rdd.offsetRanges()
rdd def save_offset_ranges(rdd):
root_path = os.path.dirname(os.path.realpath(__file__))
local_offset_path = os.path.join(root_path,LOCAL_OFFSET_FILE)
data = list()
for o in offsetRanges:
data.append({"topic":o.topic, "partition": o.partition, "fromOffset": o.fromOffset, "unitilOffset": o.untilOffset})
with open(local_offset_path,'w') as f:
f.write(json.dumps(data)) def deal_data(rdd):
def convert_dict_to_tuple(dict2):
tuple2 = []
for rowkey,values in dict2.items():
for k,v in values.items():
tuple2.append((rowkey, k.split(':'),v))
return tuple2
rdd1 = rdd.flatMap(lambda x : convert_dict_to_tuple(x)).map(lambdax: (x[0],[x[0], x[1][0], x[1][1], x[2]]))
data = rdd1.first()
logger.warning('rdd data[0]:{}'.format(data)) host = 'master,slave1,slave2'
table = 'TEST:somestatus'
keyConv = 'org.apache.spark.examples.pythonconverters.StringToImmutableBytesWritableConverter'
valueConv ='org.apache.spark.examples.pythonconverters.StringListToPutConverter'
conf = {"hbase.zookeeper.quorum":host,"hbase.mapred.outputtable":table,
"mapreduce.outputformat.class":"org.apache.hadoop.hbase.mapreduce.TableOutputFormat",
"mapreduce.job.output.key.class":"org.apache.hadoop.hbase.io.ImmutableBytesWritable",
"mapreduce.job.output.value.class":"org.apache.hadoop.io.Writeables"}
rdd1.saveAsNewAPIHadoopDataset(conf=conf,keyConverter=keyConv, valueConverter=valueConv) def save_by_spark_streaming():
root_path = os.path.dirname(os.path.realpath(__file__))
record_path = os.path.join(root_path,local_offset_file)
from_offsets = {}
if o.path.exits(record_path):
f = open(record_path,"r")
offset_data = json.loads(f.read())
f.close()
for o in offset_data:
if o['topic'] !=topic_name:
raise Exception("the topic name in %s is incorrect"% local_offset_file)
topic_partition = TopicAndPartition(o['topic'],o['partition'])
from_offsets[topic_partition] = int(o['untilOffset'])
logger.warning("partition start from offset:%s" % from_offsets)
sc = SparkContext(appName="test-kafka-integrating-streaming")
ssc = StreamingContext(sc,int(timer))
kvs = KafkaUtils.createDirectStream(ssc=ssc,topics=[topic_name],fromOffsets=from_offsets,kafkaParams={"metadata.broker.list":broker_list})
kvs.map(lambda x:json.loads(x[1])).foreachRDD(lambda rec:deal_data)rec))
kvs.transform(store_offset_ranges).foreachRDD(save_offset_ranges)
ssc.start()
ssc.awaitTermination()
ssc.stop() if __name__ == '__main__':
save_by_spark_streaming()
spark Streaming与kafka的集成消费的更多相关文章
- Spark Streaming与Kafka集成
Spark Streaming与Kafka集成 1.介绍 kafka是一个发布订阅消息系统,具有分布式.分区化.多副本提交日志特点.kafka项目在0.8和0.10之间引入了一种新型消费者API,注意 ...
- Spark Streaming之四:Spark Streaming 与 Kafka 集成分析
前言 Spark Streaming 诞生于2013年,成为Spark平台上流式处理的解决方案,同时也给大家提供除Storm 以外的另一个选择.这篇内容主要介绍Spark Streaming 数据接收 ...
- spark streaming从指定offset处消费Kafka数据
spark streaming从指定offset处消费Kafka数据 -- : 770人阅读 评论() 收藏 举报 分类: spark() 原文地址:http://blog.csdn.net/high ...
- Spark Streaming on Kafka解析和安装实战
本课分2部分讲解: 第一部分,讲解Kafka的概念.架构和用例场景: 第二部分,讲解Kafka的安装和实战. 由于时间关系,今天的课程只讲到如何用官网的例子验证Kafka的安装是否成功.后续课程会接着 ...
- spark streaming 对接kafka记录
spark streaming 对接kafka 有两种方式: 参考: http://group.jobbole.com/15559/ http://blog.csdn.net/kwu_ganymede ...
- 【转】Spark Streaming和Kafka整合开发指南
基于Receivers的方法 这个方法使用了Receivers来接收数据.Receivers的实现使用到Kafka高层次的消费者API.对于所有的Receivers,接收到的数据将会保存在Spark ...
- Spark Streaming和Kafka整合保证数据零丢失
当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢失机制.为了体验这个关键的特性,你需要满足以下几个先决条件: 1.输入的数据来自可靠的数据源 ...
- spark streaming 整合 kafka(一)
转载:https://www.iteblog.com/archives/1322.html Apache Kafka是一个分布式的消息发布-订阅系统.可以说,任何实时大数据处理工具缺少与Kafka整合 ...
- Spark Streaming使用Kafka保证数据零丢失
来自: https://community.qingcloud.com/topic/344/spark-streaming使用kafka保证数据零丢失 spark streaming从1.2开始提供了 ...
随机推荐
- scp跨服务器拷贝,后台运行
[转载]原文:https://blog.csdn.net/u013091013/article/details/68941250 通常情况下,我门在同一台服务器拷贝数据最常用的命令便是cp,如果要在不 ...
- 优化SQL集一
-->寻找低效的SQL语句 ,下面的语句主要适用于从视图v$sqlarea中获得当前运行下且耗用buffer_gets较多的SQL语句 SELECT exec ...
- PHP 部分语法(二)
array() 创建数组: 1.数值数组:带数字 ID 键的数组 2.关联数组:带有指定键的数组,键关联一个值 3.多维数组:包含一个或多个数组的数组 $arr = array("Hello ...
- oracle常用查询sql
oracle常用查询sql 原创 gordon陈 发布于2018-05-10 22:32:18 阅读数 297 收藏 展开 #!/bin/sh## create by Gordon Chen echo ...
- GO 使用 动态链接库(共享链接库)进行编译 生成动态链接可执行文件
我们使用 go help buildmode 可以看到 go 可以以多种方式进行构建,默认使用静态链接库. ➜ src go help buildmode The 'go build' and 'go ...
- Java学习笔记(6)---正则表达式,方法
1.正则表达式: a.定义: 正则表达式定义了字符串的模式. 正则表达式可以用来搜索.编辑或处理文本. 正则表达式并不仅限于某一种语言,但是在每种语言中有细微的差别. 在Java,一个字符串其实就是一 ...
- 【LOJ6620】「THUPC 2019」不等式 / inequality(线段树)
点此看题面 大致题意: 给你两个长度为\(n\)的数组\(a_i\)和\(b_i\),定义\(f_k(x)=\sum_{i=1}^k|a_ix+b_i|\),对于\(k=1\sim n\)的每个\(f ...
- Codeforces Round #598 (Div. 3) F. Equalizing Two Strings 构造
F. Equalizing Two Strings You are given two strings s and t both of length n and both consisting of ...
- Django中的跨域请求问题
本文目录 一 同源策略 二 CORS(跨域资源共享)简介 三 CORS基本流程 四 CORS两种请求详解 五 Django项目中支持CORS 回到目录 一 同源策略 同源策略(Same origin ...
- 基于python的selenium常用操作方法(2)
9 多表单切换 在Web应用中经常会遇到frame/iframe表单嵌套页面的应用,WebDriver只能在一个页面上对元素识别与定位,对于frame/iframe表单内嵌页面上的元素无法直接定位.这 ...